Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818620

RESUMO

The membrane potential (MP) controls cell homeostasis by directing molecule transport and gene expression. How the MP is set upon epithelial differentiation is unknown. Given that tissue architecture also controls homeostasis, we investigated the relationship between basoapical polarity and resting MP in three-dimensional culture of the HMT-3522 breast cancer progression. A microelectrode technique to measure MP and input resistance reveals that the MP is raised by gap junction intercellular communication (GJIC), which directs tight-junction mediated apical polarity, and is decreased by the Na+/K+/2Cl- (NKCC, encoded by SLC12A1 and SLC12A2) co-transporter, active in multicellular structures displaying basal polarity. In the tumor counterpart, the MP is reduced. Cancer cells display diminished GJIC and do not respond to furosemide, implying loss of NKCC activity. Induced differentiation of cancer cells into basally polarized multicellular structures restores widespread GJIC and NKCC responses, but these structures display the lowest MP. The absence of apical polarity, necessary for cancer onset, in the non-neoplastic epithelium is also associated with the lowest MP under active Cl- transport. We propose that the loss of apical polarity in the breast epithelium destabilizes cellular homeostasis in part by lowering the MP.


Assuntos
Glândulas Mamárias Humanas , Humanos , Potenciais da Membrana , Epitélio/metabolismo , Mama , Comunicação Celular/fisiologia , Polaridade Celular/fisiologia , Células Epiteliais , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
2.
Nucleic Acids Res ; 47(6): 2703-2715, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30812030

RESUMO

P53-binding protein 1 (53BP1) mediates DNA repair pathway choice and promotes checkpoint activation. Chromatin marks induced by DNA double-strand breaks and recognized by 53BP1 enable focal accumulation of this multifunctional repair factor at damaged chromatin. Here, we unveil an additional level of regulation of 53BP1 outside repair foci. 53BP1 movements are constrained throughout the nucleoplasm and increase in response to DNA damage. 53BP1 interacts with the structural protein NuMA, which controls 53BP1 diffusion. This interaction, and colocalization between the two proteins in vitro and in breast tissues, is reduced after DNA damage. In cell lines and breast carcinoma NuMA prevents 53BP1 accumulation at DNA breaks, and high NuMA expression predicts better patient outcomes. Manipulating NuMA expression alters PARP inhibitor sensitivity of BRCA1-null cells, end-joining activity, and immunoglobulin class switching that rely on 53BP1. We propose a mechanism involving the sequestration of 53BP1 by NuMA in the absence of DNA damage. Such a mechanism may have evolved to disable repair functions and may be a decisive factor for tumor responses to genotoxic treatments.


Assuntos
Antígenos Nucleares/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas Associadas à Matriz Nuclear/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Reparo do DNA por Junção de Extremidades/genética , Regulação para Baixo , Feminino , Células HEK293 , Humanos , Ligação Proteica
3.
Nucleic Acids Res ; 45(20): 11725-11742, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28981686

RESUMO

The nuclear mitotic apparatus protein, NuMA, is involved in major cellular events such as DNA damage response, apoptosis and p53-mediated growth-arrest, all of which are under the control of the nucleolus upon stress. Proteomic investigation has identified NuMA among hundreds of nucleolar proteins. Yet, the precise link between NuMA and nucleolar function remains undetermined. We confirm that NuMA is present in the nucleolus and reveal redistribution of NuMA upon actinomycin D or doxorubicin-induced nucleolar stress. NuMA coimmunoprecipitates with RNA polymerase I, with ribosomal proteins RPL26 and RPL24, and with components of B-WICH, an ATP-dependent chromatin remodeling complex associated with rDNA transcription. NuMA also binds to 18S and 28S rRNAs and localizes to rDNA promoter regions. Downregulation of NuMA expression triggers nucleolar stress, as shown by decreased nascent pre-rRNA synthesis, fibrillarin perinucleolar cap formation and upregulation of p27kip1, but not p53. Physiologically relevant nucleolar stress induction with reactive oxygen species reaffirms a p53-independent p27kip1 response pathway and leads to nascent pre-rRNA reduction. It also promotes the decrease in the amount of NuMA. This previously uncharacterized function of NuMA in rDNA transcription and p53-independent nucleolar stress response supports a central role for this nuclear structural protein in cellular homeostasis.


Assuntos
Antígenos Nucleares/genética , Nucléolo Celular/genética , DNA Ribossômico/genética , Proteínas Associadas à Matriz Nuclear/genética , Transcrição Gênica , Antígenos Nucleares/metabolismo , Western Blotting , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Dactinomicina/farmacologia , Doxorrubicina/farmacologia , Humanos , Microscopia Eletrônica , Proteínas Associadas à Matriz Nuclear/metabolismo , Ligação Proteica , Interferência de RNA , RNA Polimerase I/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
J Cell Sci ; 128(3): 599-604, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25501817

RESUMO

Nuclear functions including gene expression, DNA replication and genome maintenance intimately rely on dynamic changes in chromatin organization. The movements of chromatin fibers might play important roles in the regulation of these fundamental processes, yet the mechanisms controlling chromatin mobility are poorly understood owing to methodological limitations for the assessment of chromatin movements. Here, we present a facile and quantitative technique that relies on photoactivation of GFP-tagged histones and paired-particle tracking to measure chromatin mobility in live cells. We validate the method by comparing live cells to ATP-depleted cells and show that chromatin movements in mammalian cells are predominantly energy dependent. We also find that chromatin diffusion decreases in response to DNA breaks induced by a genotoxic drug or by the ISceI meganuclease. Timecourse analysis after cell exposure to ionizing radiation indicates that the decrease in chromatin mobility is transient and precedes subsequent increased mobility. Future applications of the method in the DNA repair field and beyond are discussed.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Histonas/genética , Trifosfato de Adenosina/metabolismo , Bleomicina/farmacologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Reparo do DNA , Proteínas de Fluorescência Verde/genética , Humanos , Radiação Ionizante , Raios Ultravioleta
5.
Nucleic Acids Res ; 42(10): 6365-79, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24753406

RESUMO

Chromatin remodeling factors play an active role in the DNA damage response by shaping chromatin to facilitate the repair process. The spatiotemporal regulation of these factors is key to their function, yet poorly understood. We report that the structural nuclear protein NuMA accumulates at sites of DNA damage in a poly[ADP-ribose]ylation-dependent manner and functionally interacts with the ISWI ATPase SNF2h/SMARCA5, a chromatin remodeler that facilitates DNA repair. NuMA coimmunoprecipitates with SNF2h, regulates its diffusion in the nucleoplasm and controls its accumulation at DNA breaks. Consistent with NuMA enabling SNF2h function, cells with silenced NuMA exhibit reduced chromatin decompaction after DNA cleavage, lesser focal recruitment of homologous recombination repair factors, impaired DNA double-strand break repair in chromosomal (but not in episomal) contexts and increased sensitivity to DNA cross-linking agents. These findings reveal a structural basis for the orchestration of chromatin remodeling whereby a scaffold protein promotes genome maintenance by directing a remodeler to DNA breaks.


Assuntos
Adenosina Trifosfatases/metabolismo , Antígenos Nucleares/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Associadas à Matriz Nuclear/fisiologia , Reparo de DNA por Recombinação , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Humanos
7.
J Cell Sci ; 125(Pt 2): 350-61, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331358

RESUMO

Epithelial tissue morphogenesis is accompanied by the formation of a polarity axis--a feature of tissue architecture that is initiated by the binding of integrins to the basement membrane. Polarity plays a crucial role in tissue homeostasis, preserving differentiation, cell survival and resistance to chemotherapeutic drugs among others. An important aspect in the maintenance of tissue homeostasis is genome integrity. As normal tissues frequently experience DNA double-strand breaks (DSBs), we asked how tissue architecture might participate in the DNA damage response. Using 3D culture models that mimic mammary glandular morphogenesis and tumor formation, we show that DSB repair activity is higher in basally polarized tissues, regardless of the malignant status of cells, and is controlled by hemidesmosomal integrin signaling. In the absence of glandular morphogenesis, in 2D flat monolayer cultures, basal polarity does not affect DNA repair activity but enhances H2AX phosphorylation, an early chromatin response to DNA damage. The nuclear mitotic apparatus protein 1 (NuMA), which controls breast glandular morphogenesis by acting on the organization of chromatin, displays a polarity-dependent pattern and redistributes in the cell nucleus of basally polarized cells upon the induction of DSBs. This is shown using high-content analysis of nuclear morphometric descriptors. Furthermore, silencing NuMA impairs H2AX phosphorylation--thus, tissue polarity and NuMA cooperate to maintain genome integrity.


Assuntos
Antígenos Nucleares/fisiologia , Reparo do DNA , Morfogênese , Proteínas Associadas à Matriz Nuclear/fisiologia , Células Acinares/metabolismo , Antígenos Nucleares/metabolismo , Membrana Basal/metabolismo , Mama/citologia , Técnicas de Cultura de Células , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Polaridade Celular , Quebras de DNA de Cadeia Dupla , Células Epiteliais , Epitélio/crescimento & desenvolvimento , Feminino , Histonas/metabolismo , Humanos , Proteínas Associadas à Matriz Nuclear/metabolismo
8.
ACS Biomater Sci Eng ; 9(3): 1620-1628, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36763005

RESUMO

Cellular tight junctions play a key role in establishing a barrier between different compartments of the body by regulating the selective passage of different solutes across epithelial and endothelial tissues. Over the past decade, significant efforts have been conducted to develop more clinically relevant "organ-on-a-chip" models with integrated trans-epithelial electrical resistance (TEER) monitoring systems to help better understand the fundamental underpinnings of epithelial tissue physiology upon exposure to different substances. However, most of these platforms require the use of high-cost and time-consuming photolithography processes, which limits their scalability and practical implementation in clinical research. To address this need, we have developed a low-cost microfluidic platform with an integrated electrode array that allows continuous real-time monitoring of TEER and the risk of bubble formation in the microfluidic system by using scalable manufacturing technologies such as screen printing and laser processing. The integrated printed electrode array exhibited excellent stability (with less than ∼0.02 Ω change in resistance) even after long-term exposure to a complex culture medium. As a proof of concept, the fully integrated platform was tested with HMT3522 S1 epithelial cells to evaluate the tight barrier junction formation through TEER measurement and validated with standard immunostaining procedures for Zonula occludens-1 protein. This platform could be regarded as a stepping stone for the fabrication of disposable and low-cost organ and tissue-on-a-chip models with integrated sensors to facilitate studying the dynamic response of epithelial tissues to different substances in more physiologically relevant conditions.


Assuntos
Células Epiteliais , Dispositivos Lab-On-A-Chip , Células Epiteliais/fisiologia , Linhagem Celular , Eletrodos , Impedância Elétrica
9.
Biophys J ; 102(5): 1215-23, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22404944

RESUMO

The formation of the basoapical polarity axis in epithelia is critical for maintaining the homeostasis of differentiated tissues. Factors that influence cancer development notoriously affect tissue organization. Apical polarity appears as a specific tissue feature that, once disrupted, would facilitate the onset of mammary tumors. Thus, developing means to rapidly measure apical polarity alterations would greatly favor screening for factors that endanger the breast epithelium. A Raman scattering-based platform was used for label-free determination of apical polarity in live breast glandular structures (acini) produced in three-dimensional cell culture. The coherent anti-Stokes Raman scattering signal permitted the visualization of the apical and basal surfaces of an acinus. Raman microspectroscopy subsequently revealed that polarized acini lipids were more ordered at the apical membranes compared to basal membranes, and that an inverse situation occurred in acini that lost apical polarity upon treatment with Ca(2+)-chelator EGTA. This method overcame variation between different cultures by tracking the status of apical polarity longitudinally for the same acini. Therefore, the disruption of apical polarity by a dietary breast cancer risk factor, ω6 fatty acid, could be observed with this method, even when the effect was too moderate to permit a conclusive assessment by the traditional immunostaining method.


Assuntos
Mama/citologia , Polaridade Celular , Lipídeos de Membrana/metabolismo , Microscopia/métodos , Análise Espectral Raman , Células Acinares/citologia , Membrana Celular/metabolismo , Humanos
10.
Nutr Res Rev ; 25(1): 68-95, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22853843

RESUMO

Breast cancer incidence is rising worldwide with an increase in aggressive neoplasias in young women. Possible factors involved include lifestyle changes, notably diet that is known to make an impact on gene transcription. However, among dietary factors, there is sufficient support for only greater body weight and alcohol consumption whereas numerous studies revealing an impact of specific diets and nutrients on breast cancer risk show conflicting results. Also, little information is available from middle- and low-income countries. The diversity of gene expression profiles found in breast cancers indicates that transcription control is critical for the outcome of the disease. This suggests the need for studies on nutrients that affect epigenetic mechanisms of transcription, such as DNA methylation and post-translational modifications of histones. In the present review, a new examination of the relationship between diet and breast cancer based on transcription control is proposed in light of epidemiological, animal and clinical studies. The mechanisms underlying the impact of diets on breast cancer development and factors that impede reaching clear conclusions are discussed. Understanding the interaction between nutrition and epigenetics (gene expression control via chromatin structure) is critical in light of the influence of diet during early stages of mammary gland development on breast cancer risk, suggesting a persistent effect on gene expression as shown by the influence of certain nutrients on DNA methylation. Successful development of breast cancer prevention strategies will require appropriate models, identification of biological markers for rapid assessment of preventive interventions, and coordinated worldwide research to discern the effects of diet.


Assuntos
Neoplasias da Mama/genética , Dieta , Epigênese Genética , Regulação da Expressão Gênica , Estado Nutricional , Transcrição Gênica , Animais , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Metilação de DNA , Feminino , Humanos , Incidência , Glândulas Mamárias Humanas , Nucleoproteínas , Processamento de Proteína Pós-Traducional
11.
Front Med (Lausanne) ; 9: 826776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445040

RESUMO

The primary prevention of non-communicable diseases is one of the most challenging and exciting aspects of medicine and primary care this century. For cancer, it is an urgent matter in light of the increasing burden of the disease among younger people and the higher frequency of more aggressive forms of the disease for all ages. Most chronic disorders result from the influence of the environment on the expression of genes within an individual. The environment at-large encompasses lifestyle (including nutrition), and chemical/physical and social exposures. In cancer, the interaction between the (epi)genetic makeup of an individual and a multiplicity of environmental risk and protecting factors is considered key to disease onset. Thus, like for precision therapy developed for patients, personalized or precision prevention is envisioned for individuals at risk. Prevention means identifying people at higher risk and intervening to reduce the risk. It requires biological markers of risk and non-aggressive preventive actions for the individual, but it also involves acting on the environment and the community. Social scientists are considering micro (individual/family), meso (community), and macro (country population) levels of care to illustrate that problems and solutions exist on different scales. Ideally, the design of interventions in prevention should integrate all these levels. In this perspective article, using the example of breast cancer, we are discussing challenges and possible solutions for a multidisciplinary community of scientists, primary health care practitioners and citizens to develop a holistic approach of primary prevention, keeping in mind equitable access to care.

12.
J Mammary Gland Biol Neoplasia ; 15(1): 49-63, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20101444

RESUMO

The basoapical organization of monolayered epithelia is defined by the presence of hemidesmosomes at the basal cellular pole, where the cell makes contacts with the basement membrane, and tight junctions at the opposite apical pole. In the mammary gland, tight junctions seal cell-cell contacts against the lumen and separate the apical and basolateral cell membranes. This separation is critical to organize intracellular signaling pathways and the cytoskeleton. The study of the impact of the highly organized apical pole, and notably apical polarity regulators (Crb complex, Par complex, and Scrib, Dlg, Lgl proteins) and tight junction proteins on cell phenotype and gene expression has revealed an intricate relationship between apical polarity and the cell nucleus. The goal of this review is to highlight the role of the apical pole of the tissue polarity axis in the epigenetic control of tissue phenotype. The organization of the apical pole and its importance in mammary homeostasis and tumorigenesis will be emphasized before presenting how apical polarity proteins impact gene expression indirectly, by influencing signal transduction and the location of transcription regulators, and directly, by participating in chromatin-associated complexes. The relationship between apical polarity and cell nucleus organizations might explain how apical polarity proteins could switch from nuclear repressors to nuclear promoters of cancerous behavior following alterations in the apical pole. The impact of apical polarity proteins on epigenetic mechanisms of gene expression will be discussed in light of increased evidence supporting a role for apical polarity in the fate of breast neoplasms.


Assuntos
Neoplasias da Mama/fisiopatologia , Polaridade Celular/fisiologia , Epigênese Genética , Homeostase , Glândulas Mamárias Humanas/fisiologia , Glândulas Mamárias Humanas/fisiopatologia , Animais , Neoplasias da Mama/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Animais/fisiopatologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Junções Íntimas/metabolismo , Junções Íntimas/fisiologia
13.
NAR Cancer ; 3(4): zcab043, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34734185

RESUMO

The increasing burden of cancer requires identifying and protecting individuals at highest risk. The epigenome provides an indispensable complement to genetic alterations for a risk stratification approach for the following reasons: gene transcription necessary for cancer onset is directed by epigenetic modifications and many risk factors studied so far have been associated with alterations related to the epigenome. The risk level depends on the plasticity of the epigenome during phases of life particularly sensitive to environmental and dietary impacts. Modifications in the activity of DNA regulatory regions and altered chromatin compaction may accumulate, hence leading to the increase of cancer risk. Moreover, tissue architecture directs the unique organization of the epigenome for each tissue and cell type, which allows the epigenome to control cancer risk in specific organs. Investigations of epigenetic signatures of risk should help identify a continuum of alterations leading to a threshold beyond which the epigenome cannot maintain homeostasis. We propose that this threshold may be similar in the population for a given tissue, but the pace to reach this threshold will depend on the combination of germline inheritance and the risk and protective factors encountered, particularly during windows of epigenetic susceptibility, by individuals.

14.
Front Mol Biosci ; 8: 628386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644116

RESUMO

The discovery that the stiffness of the tumor microenvironment (TME) changes during cancer progression motivated the development of cell culture involving extracellular mechanostimuli, with the intent of identifying mechanotransduction mechanisms that influence cell phenotypes. Collagen I is a main extracellular matrix (ECM) component used to study mechanotransduction in three-dimensional (3D) cell culture. There are also models with interstitial fluid stress that have been mostly focusing on the migration of invasive cells. We argue that a major step for the culture of tumors is to integrate increased ECM stiffness and fluid movement characteristic of the TME. Mechanotransduction is based on the principles of tensegrity and dynamic reciprocity, which requires measuring not only biochemical changes, but also physical changes in cytoplasmic and nuclear compartments. Most techniques available for cellular rheology were developed for a 2D, flat cell culture world, hence hampering studies requiring proper cellular architecture that, itself, depends on 3D tissue organization. New and adapted measuring techniques for 3D cell culture will be worthwhile to study the apparent increase in physical plasticity of cancer cells with disease progression. Finally, evidence of the physical heterogeneity of the TME, in terms of ECM composition and stiffness and of fluid flow, calls for the investigation of its impact on the cellular heterogeneity proposed to control tumor phenotypes. Reproducing, measuring and controlling TME heterogeneity should stimulate collaborative efforts between biologists and engineers. Studying cancers in well-tuned 3D cell culture platforms is paramount to bring mechanomedicine into the realm of oncology.

15.
Cancer Res ; 81(14): 3890-3904, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34083249

RESUMO

Obesity and poor diet often go hand-in-hand, altering metabolic signaling and thereby impacting breast cancer risk and outcomes. We have recently demonstrated that dietary patterns modulate mammary microbiota populations. An important and largely open question is whether the microbiome of the gut and mammary gland mediates the dietary effects on breast cancer. To address this, we performed fecal transplants between mice on control or high-fat diets (HFD) and recorded mammary tumor outcomes in a chemical carcinogenesis model. HFD induced protumorigenic effects, which could be mimicked in animals fed a control diet by transplanting HFD-derived microbiota. Fecal transplants altered both the gut and mammary tumor microbiota populations, suggesting a link between the gut and breast microbiomes. HFD increased serum levels of bacterial lipopolysaccharide (LPS), and control diet-derived fecal transplant reduced LPS bioavailability in HFD-fed animals. In vitro models of the normal breast epithelium showed that LPS disrupts tight junctions (TJ) and compromises epithelial permeability. In mice, HFD or fecal transplant from animals on HFD reduced expression of TJ-associated genes in the gut and mammary gland. Furthermore, infecting breast cancer cells with an HFD-derived microbiome increased proliferation, implicating tumor-associated bacteria in cancer signaling. In a double-blind placebo-controlled clinical trial of patients with breast cancer administered fish oil supplements before primary tumor resection, dietary intervention modulated the microbiota in tumors and normal breast tissue. This study demonstrates a link between the gut and breast that mediates the effect of diet on cancer. SIGNIFICANCE: This study demonstrates that diet shifts the microbiome in the gut and the breast tumor microenvironment to affect tumorigenesis, and oral dietary interventions can modulate the tumor microbiota in patients with breast cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3890/F1.large.jpg.


Assuntos
Mama/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Animais , Carcinogênese , Feminino , Humanos , Camundongos , Microbiota , Transdução de Sinais
16.
Biochim Biophys Acta ; 1790(9): 925-35, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19328836

RESUMO

Post-translational modification of histones, ATP-dependent chromatin remodeling, and DNA methylation are interconnected nuclear mechanisms that ultimately lead to the changes in chromatin structure necessary to carry out epigenetic gene expression control. Tissue differentiation is characterized by a specific gene expression profile in association with the acquisition of a defined tissue architecture and function. Elements critical for tissue differentiation, like extracellular stimuli, adhesion and cell shape properties, and transcription factors all contribute to the modulation of gene expression and thus, are likely to impinge on the nuclear mechanisms of epigenetic gene expression control. In this review, we analyze how these elements modify chromatin structure in a hierarchical manner by acting on the nuclear machinery. We discuss how mechanotransduction via the structural continuum of the cell and biochemical signaling to the cell nucleus integrate to provide a comprehensive control of gene expression. The role of nuclear organization in this control is highlighted, with a presentation of differentiation-induced nuclear structure and the concept of nuclear organization as a modulator of the response to incoming signals.


Assuntos
Núcleo Celular/metabolismo , Cromatina/química , Epigênese Genética , Matriz Extracelular/fisiologia , Regulação da Expressão Gênica , Transdução de Sinais/fisiologia , Animais , Adesão Celular , Diferenciação Celular , Metilação de DNA , Perfilação da Expressão Gênica , Humanos
17.
Mol Biol Cell ; 18(2): 348-61, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17108325

RESUMO

The coiled-coil protein NuMA is an important contributor to mitotic spindle formation and stabilization. A potential role for NuMA in nuclear organization or gene regulation is suggested by the observations that its pattern of nuclear distribution depends upon cell phenotype and that it interacts and/or colocalizes with transcription factors. To date, the precise contribution of NuMA to nuclear function remains unclear. Previously, we observed that antibody-induced alteration of NuMA distribution in growth-arrested and differentiated mammary epithelial structures (acini) in three-dimensional culture triggers the loss of acinar differentiation. Here, we show that in mammary epithelial cells, NuMA is present in both the nuclear matrix and chromatin compartments. Expression of a portion of the C terminus of NuMA that shares sequence similarity with the chromatin regulator HPC2 is sufficient to inhibit acinar differentiation and results in the redistribution of NuMA, chromatin markers acetyl-H4 and H4K20m, and regions of deoxyribonuclease I-sensitive chromatin compared with control cells. Short-term alteration of NuMA distribution with anti-NuMA C-terminus antibodies in live acinar cells indicates that changes in NuMA and chromatin organization precede loss of acinar differentiation. These findings suggest that NuMA has a role in mammary epithelial differentiation by influencing the organization of chromatin.


Assuntos
Antígenos Nucleares/fisiologia , Diferenciação Celular , Cromatina/metabolismo , Células Epiteliais/citologia , Glândulas Mamárias Humanas/citologia , Proteínas Associadas à Matriz Nuclear/fisiologia , Antígenos Nucleares/análise , Antígenos Nucleares/genética , Proteínas de Ciclo Celular , Cromatina/química , DNA/metabolismo , DNA Complementar/genética , Células Epiteliais/química , Células Epiteliais/metabolismo , Epitélio/química , Epitélio/metabolismo , Humanos , Interfase , Glândulas Mamárias Humanas/química , Glândulas Mamárias Humanas/metabolismo , Proteínas Associadas à Matriz Nuclear/análise , Proteínas Associadas à Matriz Nuclear/genética , Peptídeos/química , Peptídeos/genética
18.
BMC Biol ; 7: 77, 2009 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-19917093

RESUMO

BACKGROUND: Basoapical polarity in epithelia is critical for proper tissue function, and control of proliferation and survival. Cell culture models that recapitulate epithelial tissue architecture are invaluable to unravel developmental and disease mechanisms. Although factors important for the establishment of basal polarity have been identified, requirements for the formation of apical polarity in three-dimensional tissue structures have not been thoroughly investigated. RESULTS: We demonstrate that the human mammary epithelial cell line-3522 S1, provides a resilient model for studying the formation of basoapical polarity in glandular structures. Testing three-dimensional culture systems that differ in composition and origin of substrata reveals that apical polarity is more sensitive to culture conditions than basal polarity. Using a new high-throughput culture method that produces basoapical polarity in glandular structures without a gel coat, we show that basal polarity-mediated signaling and collagen IV are both necessary for the development of apical polarity. CONCLUSION: These results provide new insights into the role of the basement membrane, and especially collagen IV, in the development of the apical pole, a critical element of the architecture of glandular epithelia. Also, the high-throughput culture method developed in this study should open new avenues for high-content screening of agents that act on mammary tissue homeostasis and thus, on architectural changes involved in cancer development.


Assuntos
Diferenciação Celular/fisiologia , Polaridade Celular/fisiologia , Células Epiteliais/citologia , Glândulas Mamárias Humanas/citologia , Membrana Basal/metabolismo , Mama , Técnicas de Cultura de Células , Linhagem Celular , Colágeno Tipo IV/metabolismo , Células Epiteliais/fisiologia , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Glândulas Mamárias Humanas/fisiologia , Transdução de Sinais , Esferoides Celulares
19.
Sci Rep ; 10(1): 10805, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616817

RESUMO

Models using 3D cell culture techniques are increasingly accepted as the most biofidelic in vitro representations of tissues for research. These models are generated using biomatrices and bulk populations of cells derived from tissues or cell lines. We present an alternate method to culture individually selected cells in relative isolation from the rest of the population under physiologically relevant matrix conditions. Matrix gel islands are spotted on a cell culture dish to act as support for receiving and culturing individual single cells; a glass capillary-based microfluidic setup is used to extract each desired single cell from a population and seed it on top of an island. Using examples of breast and colorectal cancers, we show that individual cells evolve into tumors or aspects of tumors displaying different characteristics of the initial cancer type and aggressiveness. By implementing a morphometry assay with luminal A breast cancer, we demonstrate the potential of the proposed approach to study phenotypic heterogeneity. Results reveal that intertumor heterogeneity increases with time in culture and that varying degrees of intratumor heterogeneity may originate from individually seeded cells. Moreover, we observe that a positive relationship exists between fast growing tumors and the size and heterogeneity of their nuclei.


Assuntos
Técnicas de Cultura de Células/métodos , Impressão Tridimensional , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais/patologia , Feminino , Humanos , Células MCF-7 , Neoplasias Pancreáticas/patologia , Análise de Célula Única
20.
Lab Chip ; 20(4): 778-788, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31951245

RESUMO

Extracellular matrix (ECM) mechanical stiffness and its dynamic change is one of the main cues that directly affects the differentiation and proliferation of normal cells as well as the progression of disease processes such as fibrosis and cancer. Recent advancements in biomaterials have enabled a wide range of polymer matrices that could mimic the ECM of different tissues for a wide range of in vitro basic research and drug discovery. However, most of the technologies utilized to quantify the stiffness of such ECM are either destructive or expensive, and therefore are unsuitable for the in situ, long-term monitoring of variations in ECM stiffness for on-chip cell culture applications. This work demonstrates a novel noninvasive on-chip platform for characterization of ECM stiffness in vitro, by monitoring ultrasonic wave attenuation through the targeted material. The device is composed of a pair of millimeter scale ultrasonic transmitter and receiver transducers with the test medium placed in between them. The transmitter generates an ultrasonic wave that propagates through the material, triggers the piezoelectric receiver and generates a corresponding electrical signal. The characterization reveals a linear (r2 = 0.86) decrease in the output voltage of the piezoelectric receiver with an average sensitivity of -15.86 µV kPa-1 by increasing the stiffnesses of hydrogels (from 4.3 kPa to 308 kPa made with various dry-weight concentrations of agarose and gelatin). The ultrasonic stiffness sensing is also demonstrated to successfully monitor dynamic changes in a simulated in vitro tissue by gradually changing the polymerization density of an agarose gel, as a proof-of-concept towards future use for 3D cell culture and drug screening. In situ long-term ultrasonic signal stability and thermal assessment of the device demonstrates its high robust performance even after two days of continuous operation, with negligible (<0.5 °C) heating of the hydrogel in contact with the piezoelectric transducers. In vitro biocompatibility assessment of the device with mammary fibroblasts further assures that the materials used in the platform did not produce a toxic response and cells remained viable under the applied ultrasound signals in the device.


Assuntos
Matriz Extracelular , Ultrassom , Técnicas de Cultura de Células , Diferenciação Celular , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA