Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Ecol ; 32(10): 2674-2687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35000239

RESUMO

The shifts in adaptive strategies revealed by ecological succession and the mechanisms that facilitate these shifts are fundamental to ecology. These adaptive strategies could be particularly important in communities of arbuscular mycorrhizal fungi (AMF) mutualistic with sorghum, where strong AMF succession replaces initially ruderal species with competitive ones and where the strongest plant response to drought is to manage these AMF. Although most studies of agriculturally important fungi focus on parasites, the mutualistic symbionts, AMF, constitute a research system of human-associated fungi whose relative simplicity and synchrony are conducive to experimental ecology. First, we hypothesize that, when irrigation is stopped to mimic drought, competitive AMF species should be replaced by AMF species tolerant to drought stress. We then, for the first time, correlate AMF abundance and host plant transcription to test two novel hypotheses about the mechanisms behind the shift from ruderal to competitive AMF. Surprisingly, despite imposing drought stress, we found no stress-tolerant AMF, probably due to our agricultural system having been irrigated for nearly six decades. Remarkably, we found strong and differential correlation between the successional shift from ruderal to competitive AMF and sorghum genes whose products (i) produce and release strigolactone signals, (ii) perceive mycorrhizal-lipochitinoligosaccharide (Myc-LCO) signals, (iii) provide plant lipid and sugar to AMF, and (iv) import minerals and water provided by AMF. These novel insights frame new hypotheses about AMF adaptive evolution and suggest a rationale for selecting AMF to reduce inputs and maximize yields in commercial agriculture.


Assuntos
Micorrizas , Humanos , Micorrizas/genética , Simbiose/genética , Plantas/genética , Plantas/microbiologia , Agricultura , Expressão Gênica , Raízes de Plantas/microbiologia , Microbiologia do Solo , Solo
2.
Plant Biotechnol J ; 20(4): 748-760, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34837319

RESUMO

Sorghum bicolor (L.) Moench, the fifth most important cereal worldwide, is a multi-use crop for feed, food, forage and fuel. To enhance the sorghum and other important crop plants, establishing gene function is essential for their improvement. For sorghum, identifying genes associated with its notable abiotic stress tolerances requires a detailed molecular understanding of the genes associated with those traits. The limits of this knowledge became evident from our earlier in-depth sorghum transcriptome study showing that over 40% of its transcriptome had not been annotated. Here, we describe a full spectrum of tools to engineer, edit, annotate and characterize sorghum's genes. Efforts to develop those tools began with a morphogene-assisted transformation (MAT) method that led to accelerated transformation times, nearly half the time required with classical callus-based, non-MAT approaches. These efforts also led to expanded numbers of amenable genotypes, including several not previously transformed or historically recalcitrant. Another transformation advance, termed altruistic, involved introducing a gene of interest in a separate Agrobacterium strain from the one with morphogenes, leading to plants with the gene of interest but without morphogenes. The MAT approach was also successfully used to edit a target exemplary gene, phytoene desaturase. To identify single-copy transformed plants, we adapted a high-throughput technique and also developed a novel method to determine transgene independent integration. These efforts led to an efficient method to determine gene function, expediting research in numerous genotypes of this widely grown, multi-use crop.


Assuntos
Edição de Genes , Sorghum , Agrobacterium/genética , Grão Comestível/genética , Plantas Geneticamente Modificadas/genética , Sorghum/genética
3.
Proc Natl Acad Sci U S A ; 116(52): 27124-27132, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31806758

RESUMO

Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [Sorghum bicolor (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant. We conducted a large-scale field experiment, imposing preflowering and postflowering drought stress on 2 genotypes of sorghum across a tightly resolved time series, from plant emergence to postanthesis, resulting in a dataset of nearly 400 transcriptomes. We observed a fast and global transcriptomic response in leaf and root tissues with clear temporal patterns, including modulation of well-known drought pathways. We also identified genotypic differences in core photosynthesis and reactive oxygen species scavenging pathways, highlighting possible mechanisms of drought tolerance and of the delayed senescence, characteristic of the stay-green phenotype. Finally, we discovered a large-scale depletion in the expression of genes critical to arbuscular mycorrhizal (AM) symbiosis, with a corresponding drop in AM fungal mass in the plants' roots.

4.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310712

RESUMO

Soils play important roles in biological productivity. While past work suggests that microbes affect soil health and respond to agricultural practices, it is not well known how soil management shapes crop host microbiomes. To elucidate the impact of management on microbial composition and function in the sorghum microbiome, we performed 16S rRNA gene and ITS2 amplicon sequencing and metatranscriptomics on soil and root samples collected from a site in California's San Joaquin Valley that is under long-term cultivation with 1) standard (ST) or no tilling (NT) and 2) cover-cropping (CC) or leaving the field fallow (NO). Our results revealed that microbial diversity, composition, and function change across tillage and cover type, with a heightened response in fungal communities, versus bacterial. Surprisingly, ST harbored greater microbial alpha diversity than NT, indicating that tillage may open niche spaces for broad colonization. Across management regimes, we observed class-level taxonomic level shifts. Additionally, we found significant functional restructuring across treatments, including enrichment for microbial lipid and carbohydrate transport and metabolism and cell motility with NT. Differences in carbon cycling were also observed, with increased prevalence of glycosyltransferase and glycoside hydrolase carbohydrate active enzyme families with CC. Lastly, treatment significantly influenced arbuscular mycorrhizal fungi, which had the greatest prevalence and activity under ST, suggesting that soil practices mediate known beneficial plant-microbe relationships. Collectively, our results demonstrate how agronomic practices impact critical interactions within the plant microbiome and inform future efforts to configure trait-associated microbiomes in crops.Importance While numerous studies show that farming practices can influence the soil microbiome, there are often conflicting results on how microbial diversity and activity respond to treatment. In addition, there is very little work published on how the corresponding crop plant microbiome is impacted. With bacteria and fungi known to critically affect soil health and plant growth, we concurrently compared how the practices of no and standard tillage, in combination with either cover-cropping or fallow fields, shape soil and plant-associated microbiomes between the two classifications. In determining not only the response to treatment in microbial diversity and composition, but for activity as well, this work demonstrates the significance of agronomic practice in modulating plant-microbe interactions, as well as encourages future work on the mechanisms involved in community assemblages supporting similar crop outcomes.

5.
Methods ; 184: 29-39, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655121

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop noted for its ability to survive water-limiting conditions. Herein, we present an analytical workflow to explore the changes in histone modifications through plant developmental stages and two drought stresses in two sorghum genotypes that differ in their response to drought. Top-down mass spectrometry (MS) is an ideal method to profile histone modifications and distinguish closely related histone proteoforms. We analyzed leaves of 48 plants and identified 26 unique histone proteins and 677 unique histone proteoforms (124 full-length and 553 truncated proteoforms). We detected trimethylation on nearly all H2B N-termini where acetylation is commonly expected. In addition, an unexpected modification on H2A histones was assigned to N-pyruvic acid 2-iminylation based on its unique neutral loss of CO2. Interestingly, some of the truncated histones, in particular H4 and H3.2, showed significant changes that correlated with the growth and water conditions. The histone proteoforms could serve as targets in search of chromatin modifiers and ultimately have important ramifications in future attempts of studying plant epigenetic reprogramming under stress.


Assuntos
Aclimatação/genética , Histonas/análise , Espectrometria de Massas/métodos , Sorghum/fisiologia , Cromatografia de Fase Reversa/métodos , Secas , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Código das Histonas/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Ácido Pirúvico/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(18): E4284-E4293, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666229

RESUMO

Drought stress is a major obstacle to crop productivity, and the severity and frequency of drought are expected to increase in the coming century. Certain root-associated bacteria have been shown to mitigate the negative effects of drought stress on plant growth, and manipulation of the crop microbiome is an emerging strategy for overcoming drought stress in agricultural systems, yet the effect of drought on the development of the root microbiome is poorly understood. Through 16S rRNA amplicon and metatranscriptome sequencing, as well as root metabolomics, we demonstrate that drought delays the development of the early sorghum root microbiome and causes increased abundance and activity of monoderm bacteria, which lack an outer cell membrane and contain thick cell walls. Our data suggest that altered plant metabolism and increased activity of bacterial ATP-binding cassette (ABC) transporter genes are correlated with these shifts in community composition. Finally, inoculation experiments with monoderm isolates indicate that increased colonization of the root during drought can positively impact plant growth. Collectively, these results demonstrate the role that drought plays in restructuring the root microbiome and highlight the importance of temporal sampling when studying plant-associated microbiomes.


Assuntos
Bactérias , Microbiota , Raízes de Plantas/microbiologia , Sorghum/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Desidratação/metabolismo , Desidratação/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sorghum/crescimento & desenvolvimento
7.
Proc Natl Acad Sci U S A ; 114(29): 7725-7730, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28634304

RESUMO

Barley is the cornerstone of the malting and brewing industry. It is known that 250 quantitative trait loci (QTLs) of the grain are associated with 19 malting-quality phenotypes. However, only a few of the contributing genetic components have been identified. One of these, on chromosome 4H, contains a major malting QTL, QTL2, located near the telomeric region that accounts, respectively, for 28.9% and 37.6% of the variation in the ß-glucan and extract fractions of malt. In the current study, we dissected the QTL2 region using an expression- and microsynteny-based approach. From a set of 22 expressed sequence tags expressed in seeds at the malting stage, we identified a candidate gene, TLP8 (thaumatin-like protein 8), which was differentially expressed and influenced malting quality. Transcript abundance and protein profiles of TLP8 were studied in different malt and feed varieties using quantitative PCR, immunoblotting, and enzyme-linked immunosorbent assay (ELISA). The experiments demonstrated that TLP8 binds to insoluble (1, 3, 1, 4)-ß-D glucan in grain extracts, thereby facilitating the removal of this undesirable polysaccharide during malting. Further, the binding of TLP8 to ß-glucan was dependent on redox. These findings represent a stride forward in our understanding of the malting process and provide a foundation for future improvements in the final beer-making process.


Assuntos
Hordeum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta-Glucanas/metabolismo , Sítios de Ligação , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Oryza/genética , Oxirredução , Filogenia , Proteínas de Plantas/química , Locos de Características Quantitativas
8.
Plant Cell ; 28(7): 1510-20, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27335450

RESUMO

Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized.


Assuntos
Produtos Agrícolas/genética , Edição de Genes , Genoma de Planta/genética , Agrobacterium tumefaciens/genética , Produtos Agrícolas/metabolismo , DNA de Plantas/genética , Recombinação Genética/genética , Transformação Genética/genética
9.
Planta ; 245(5): 1009-1020, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28188423

RESUMO

MAIN CONCLUSION: Evidence shows that decreasing the light-harvesting antenna size of the photosystems in tobacco helps to increase the photosynthetic productivity and plant canopy biomass accumulation under high-density cultivation conditions. Decreasing, or truncating, the chlorophyll antenna size of the photosystems can theoretically improve photosynthetic solar energy conversion efficiency and productivity in mass cultures of algae or plants by up to threefold. A Truncated Light-harvesting chlorophyll Antenna size (TLA), in all classes of photosynthetic organisms, would help to alleviate excess absorption of sunlight and the ensuing wasteful non-photochemical dissipation of excitation energy. Thus, solar-to-biomass energy conversion efficiency and photosynthetic productivity in high-density cultures can be increased. Applicability of the TLA concept was previously shown in green microalgae and cyanobacteria, but it has not yet been demonstrated in crop plants. In this work, the TLA concept was applied in high-density tobacco canopies. The work showed a 25% improvement in stem and leaf biomass accumulation for the TLA tobacco canopies over that measured with their wild-type counterparts grown under the same ambient conditions. Distinct canopy appearance differences are described between the TLA and wild type tobacco plants. Findings are discussed in terms of concept application to crop plants, leading to significant improvements in agronomy, agricultural productivity, and application of photosynthesis for the generation of commodity products in crop leaves.


Assuntos
Complexos de Proteínas Captadores de Luz/genética , Nicotiana/genética , Biomassa , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Luz Solar , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Nicotiana/efeitos da radiação
10.
Plant J ; 84(1): 216-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252423

RESUMO

Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Genoma de Planta/genética , Hordeum/genética , Dados de Sequência Molecular
11.
Proc Natl Acad Sci U S A ; 107(8): 3900-5, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133584

RESUMO

Thioredoxins (Trxs) are small ubiquitous regulatory disulfide proteins. Plants have an unusually complex complement of Trxs composed of six well-defined types (Trxs f, m, x, y, h, and o) that reside in different cell compartments and function in an array of processes. The extraplastidic h type consists of multiple members that in general have resisted isolation of a specific phenotype. In analyzing mutant lines in Arabidopsis thaliana, we identified a phenotype of dwarf plants with short roots and small yellowish leaves for AtTrx h9 (henceforth, Trx h9), a member of the Arabidopsis Trx h family. Trx h9 was found to be associated with the plasma membrane and to move from cell to cell. Controls conducted in conjunction with the localization of Trx h9 uncovered another h-type Trx in mitochondria (Trx h2) and a Trx in plastids earlier described as a cytosolic form in tomato. Analysis of Trx h9 revealed a 17-amino acid N-terminal extension in which the second Gly (Gly(2)) and fourth cysteine (Cys(4)) were highly conserved. Mutagenesis experiments demonstrated that Gly(2) was required for membrane binding, possibly via myristoylation. Both Gly(2) and Cys(4) were needed for movement, the latter seemingly for protein structure and palmitoylation. A three-dimensional model was consistent with these predictions as well as with earlier evidence showing that a poplar ortholog is reduced by a glutaredoxin rather than NADP-thioredoxin reductase. In demonstrating the membrane location and intercellular mobility of Trx h9, the present results extend the known boundaries of Trx and suggest a role in cell-to-cell communication.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Comunicação Celular , Membrana Celular/metabolismo , Tiorredoxinas/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cisteína/genética , Glicina/genética , Mutação , Plastídeos/metabolismo , Conformação Proteica , Tiorredoxinas/química , Tiorredoxinas/genética
12.
Annu Rev Plant Biol ; 59: 771-812, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18284373

RESUMO

Through the use of the new tools of genetic engineering, genes can be introduced into the same plant or animal species or into plants or animals that are not sexually compatible-the latter is a distinction with classical breeding. This technology has led to the commercial production of genetically engineered (GE) crops on approximately 250 million acres worldwide. These crops generally are herbicide and pest tolerant, but other GE crops in the pipeline focus on other traits. For some farmers and consumers, planting and eating foods from these crops are acceptable; for others they raise issues related to safety of the foods and the environment. In Part I of this review some general and food issues raised regarding GE crops and foods will be addressed. Responses to these issues, where possible, cite peer-reviewed scientific literature. In Part II to appear in 2009, issues related to environmental and socioeconomic aspects of GE crops and foods will be covered.


Assuntos
Tecnologia de Alimentos/normas , Alimentos Geneticamente Modificados , Plantas Geneticamente Modificadas , Produtos Agrícolas/genética , Produtos Agrícolas/normas , DNA de Plantas/genética , DNA Ribossômico/genética , Alimentos Geneticamente Modificados/classificação , Alimentos Geneticamente Modificados/normas , Marcadores Genéticos , Humanos , Segurança , Solanum tuberosum/genética
13.
Plant Direct ; 7(11): e545, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965197

RESUMO

Climate change is globally affecting rainfall patterns, necessitating the improvement of drought tolerance in crops. Sorghum bicolor is a relatively drought-tolerant cereal. Functional stay-green sorghum genotypes can maintain green leaf area and efficient grain filling during terminal post-flowering water deprivation, a period of ~10 weeks. To obtain molecular insights into these characteristics, two drought-tolerant genotypes, BTx642 and RTx430, were grown in replicated control and terminal post-flowering drought field plots in California's Central Valley. Photosynthetic, photoprotective, and water dynamics traits were quantified and correlated with metabolomic data collected from leaves, stems, and roots at multiple timepoints during control and drought conditions. Physiological and metabolomic data were then compared to longitudinal RNA sequencing data collected from these two genotypes. The unique metabolic and transcriptomic response to post-flowering drought in sorghum supports a role for the metabolite galactinol in controlling photosynthetic activity through regulating stomatal closure in post-flowering drought. Additionally, in the functional stay-green genotype BTx642, photoprotective responses were specifically induced in post-flowering drought, supporting a role for photoprotection in the molecular response associated with the functional stay-green trait. From these insights, new pathways are identified that can be targeted to maximize yields under growth conditions with limited water.

15.
Comput Struct Biotechnol J ; 20: 5342-5349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212539

RESUMO

The germination process is of central importance across the cultivated species involving several key enzymes for mobilization of stored food reserves. Pullulanase (PUL), a starch-debranching enzyme, plays an important role in mobilizing stored endosperm food reserves during germination. Pullulanase inhibitor (PULI) hinders PUL's activity through an unknown mechanism. Barley has one PUL and two PULI genes. During the time-dependent processes of seed germination, only PULI-1 expression shows an antagonistic relationship with that of PUL. Our data have indicated that the expression of PULI-1 is modulated by SPL (Squamosa-promoter-binding Protein Like) transcription factors, known to be targeted by miR156. We show that the binding of recombinant HvSPL3 protein to the PULI-1 promoter occurs under reducing, but not under oxidizing conditions. Replacement of Cys residues with threonine in HvSPL3 abolishes the binding, indicating an essential role of the redox state in the expression of PULI. Our findings may have important implications for the industrial use of starch.

16.
Nat Commun ; 13(1): 3867, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790741

RESUMO

Plant response to drought stress involves fungi and bacteria that live on and in plants and in the rhizosphere, yet the stability of these myco- and micro-biomes remains poorly understood. We investigate the resistance and resilience of fungi and bacteria to drought in an agricultural system using both community composition and microbial associations. Here we show that tests of the fundamental hypotheses that fungi, as compared to bacteria, are (i) more resistant to drought stress but (ii) less resilient when rewetting relieves the stress, found robust support at the level of community composition. Results were more complex using all-correlations and co-occurrence networks. In general, drought disrupts microbial networks based on significant positive correlations among bacteria, among fungi, and between bacteria and fungi. Surprisingly, co-occurrence networks among functional guilds of rhizosphere fungi and leaf bacteria were strengthened by drought, and the same was seen for networks involving arbuscular mycorrhizal fungi in the rhizosphere. We also found support for the stress gradient hypothesis because drought increased the relative frequency of positive correlations.


Assuntos
Microbiota , Micorrizas , Bactérias/genética , Microbiota/fisiologia , Plantas/microbiologia , Rizosfera , Microbiologia do Solo
17.
iScience ; 25(2): 103754, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146383

RESUMO

Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming.

18.
Sci Adv ; 8(6): eabj4633, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138897

RESUMO

Rapid environmental change can lead to population extinction or evolutionary rescue. The global staple crop sorghum (Sorghum bicolor) has recently been threatened by a global outbreak of an aggressive new biotype of sugarcane aphid (SCA; Melanaphis sacchari). We characterized genomic signatures of adaptation in a Haitian breeding population that had rapidly adapted to SCA infestation, conducting evolutionary population genomics analyses on 296 Haitian lines versus 767 global accessions. Genome scans and geographic analyses suggest that SCA adaptation has been conferred by a globally rare East African allele of RMES1, which spread to breeding programs in Africa, Asia, and the Americas. De novo genome sequencing revealed potential causative variants at RMES1. Markers developed from the RMES1 sweep predicted resistance in eight independent commercial and public breeding programs. These findings demonstrate the value of evolutionary genomics to develop adaptive trait technology and highlight the benefits of global germplasm exchange to facilitate evolutionary rescue.

19.
Microbiome ; 9(1): 69, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762001

RESUMO

Host-microbiome interactions are recognized for their importance to host health. An improved understanding of the molecular underpinnings of host-microbiome relationships will advance our capacity to accurately predict host fitness and manipulate interaction outcomes. Within the plant microbiome research field, unlocking the functional relationships between plants and their microbial partners is the next step to effectively using the microbiome to improve plant fitness. We propose that strategies that pair host and microbial datasets-referred to here as holo-omics-provide a powerful approach for hypothesis development and advancement in this area. We discuss several experimental design considerations and present a case study to highlight the potential for holo-omics to generate a more holistic perspective of molecular networks within the plant microbiome system. In addition, we discuss the biggest challenges for conducting holo-omics studies; specifically, the lack of vetted analytical frameworks, publicly available tools, and required technical expertise to process and integrate heterogeneous data. Finally, we conclude with a perspective on appropriate use-cases for holo-omics studies, the need for downstream validation, and new experimental techniques that hold promise for the plant microbiome research field. We argue that utilizing a holo-omics approach to characterize host-microbiome interactions can provide important opportunities for broadening system-level understandings and significantly inform microbial approaches to improving host health and fitness. Video abstract.


Assuntos
Microbiota , Microbiota/genética , Plantas
20.
Front Plant Sci ; 12: 747225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868130

RESUMO

Renewable fuels are needed to replace fossil fuels in the immediate future. Lignocellulosic bioenergy crops provide a renewable alternative that sequesters atmospheric carbon. To prevent displacement of food crops, it would be advantageous to grow biofuel crops on marginal lands. These lands will likely face more frequent and extreme drought conditions than conventional agricultural land, so it is crucial to see how proposed bioenergy crops fare under these conditions and how that may affect lignocellulosic biomass composition and saccharification properties. We found that while drought impacts the plant cell wall of Sorghum bicolor differently according to tissue and timing of drought induction, drought-induced cell wall compositional modifications are relatively minor and produce no negative effect on biomass conversion. This contrasts with the cell wall-related transcriptome, which had a varied range of highly variable genes (HVGs) within four cell wall-related GO categories, depending on the tissues surveyed and time of drought induction. Further, many HVGs had expression changes in which putative impacts were not seen in the physical cell wall or which were in opposition to their putative impacts. Interestingly, most pre-flowering drought-induced cell wall changes occurred in the leaf, with matrix and lignin compositional changes that did not persist after recovery from drought. Most measurable physical post-flowering cell wall changes occurred in the root, affecting mainly polysaccharide composition and cross-linking. This study couples transcriptomics to cell wall chemical analyses of a C4 grass experiencing progressive and differing drought stresses in the field. As such, we can analyze the cell wall-specific response to agriculturally relevant drought stresses on the transcriptomic level and see whether those changes translate to compositional or biomass conversion differences. Our results bolster the conclusion that drought stress does not substantially affect the cell wall composition of specific aerial and subterranean biomass nor impede enzymatic hydrolysis of leaf biomass, a positive result for biorefinery processes. Coupled with previously reported results on the root microbiome and rhizosphere and whole transcriptome analyses of this study, we can formulate and test hypotheses on individual gene candidates' function in mediating drought stress in the grass cell wall, as demonstrated in sorghum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA