Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(2): 414-426, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703328

RESUMO

Facioscapulohumeral dystrophy (FSHD) has a unique genetic aetiology resulting in partial chromatin relaxation of the D4Z4 macrosatellite repeat array on 4qter. This D4Z4 chromatin relaxation facilitates inappropriate expression of the transcription factor DUX4 in skeletal muscle. DUX4 is encoded by a retrogene that is embedded within the distal region of the D4Z4 repeat array. In the European population, the D4Z4 repeat array is usually organized in a single array that ranges between 8 and 100 units. D4Z4 chromatin relaxation and DUX4 derepression in FSHD is most often caused by repeat array contraction to 1-10 units (FSHD1) or by a digenic mechanism requiring pathogenic variants in a D4Z4 chromatin repressor like SMCHD1, combined with a repeat array between 8 and 20 units (FSHD2). With a prevalence of 1.5% in the European population, in cis duplications of the D4Z4 repeat array, where two adjacent D4Z4 arrays are interrupted by a spacer sequence, are relatively common but their relationship to FSHD is not well understood. In cis duplication alleles were shown to be pathogenic in FSHD2 patients; however, there is inconsistent evidence for the necessity of an SMCHD1 mutation for disease development. To explore the pathogenic nature of these alleles we compared in cis duplication alleles in FSHD patients with or without pathogenic SMCHD1 variant. For both groups we showed duplication-allele-specific DUX4 expression. We studied these alleles in detail using pulsed-field gel electrophoresis-based Southern blotting and molecular combing, emphasizing the challenges in the characterization of these rearrangements. Nanopore sequencing was instrumental to study the composition and methylation of the duplicated D4Z4 repeat arrays and to identify the breakpoints and the spacer sequence between the arrays. By comparing the composition of the D4Z4 repeat array of in cis duplication alleles in both groups, we found that specific combinations of proximal and distal repeat array sizes determine their pathogenicity. Supported by our algorithm to predict pathogenicity, diagnostic laboratories should now be furnished to accurately interpret these in cis D4Z4 repeat array duplications, alleles that can easily be missed in routine settings.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Alelos , Proteínas Cromossômicas não Histona/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Cromatina
2.
Hum Mol Genet ; 31(5): 748-760, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34559225

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy clinically characterized by weakness in the facial, shoulder girdle and upper a muscles. FSHD is caused by chromatin relaxation of the D4Z4 macrosatellite repeat, mostly by a repeat contraction, facilitating ectopic expression of DUX4 in skeletal muscle. Genetic diagnosis for FSHD is generally based on the sizing and haplotyping of the D4Z4 repeat on chromosome 4 by Southern blotting (SB), molecular combing or single-molecule optical mapping, which is usually straight forward but can be complicated by atypical rearrangements of the D4Z4 repeat. One of these rearrangements is a D4Z4 proximally extended deletion (DPED) allele, where not only the D4Z4 repeat is partially deleted, but also sequences immediately proximal to the repeat are lost, which can impede accurate diagnosis in all genetic methods. Previously, we identified several DPED alleles in FSHD and estimated the size of the proximal deletions by a complex pulsed-field gel electrophoresis and SB strategy. Here, using the next-generation sequencing, we have defined the breakpoint junctions of these DPED alleles at the base pair resolution in 12 FSHD families and 4 control individuals facilitating a PCR-based diagnosis of these DPED alleles. Our resultsshow that half of the DPED alleles are derivates of an ancient founder allele. For some DPED alleles, we found that genetic elements are deleted such as DUX4c, FRG2, DBE-T and myogenic enhancers necessitating re-evaluation of their role in FSHD pathogenesis.


Assuntos
Distrofia Muscular Facioescapuloumeral , Alelos , Cromatina , Cromossomos Humanos Par 4/genética , Efeito Fundador , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo
3.
Clin Genet ; 106(1): 13-26, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685133

RESUMO

The gold standard for facioscapulohumeral muscular dystrophy (FSHD) genetic diagnostic procedures was published in 2012. With the increasing complexity of the genetics of FSHD1 and 2, the increase of genetic testing centers, and the start of clinical trials for FSHD, it is crucial to provide an update on our knowledge of the genetic features of the FSHD loci and renew the international consensus on the molecular testing recommendations. To this end, members of the FSHD European Trial Network summarized the evidence presented during the 2022 ENMC meeting on Genetic diagnosis, clinical outcome measures, and biomarkers. The working group additionally invited genetic and clinical experts from the USA, India, Japan, Australia, South-Africa, and Brazil to provide a global perspective. Six virtual meetings were organized to reach consensus on the minimal requirements for genetic confirmation of FSHD1 and FSHD2. Here, we present the clinical and genetic features of FSHD, specific features of FSHD1 and FSHD2, pros and cons of established and new technologies (Southern blot in combination with either linear or pulsed-field gel electrophoresis, molecular combing, optical genome mapping, FSHD2 methylation analysis and FSHD2 genotyping), the possibilities and challenges of prenatal testing, including pre-implantation genetic testing, and the minimal requirements and recommendations for genetic confirmation of FSHD1 and FSHD2. This consensus is expected to contribute to current clinical management and trial-readiness for FSHD.


Assuntos
Testes Genéticos , Distrofia Muscular Facioescapuloumeral , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Humanos , Testes Genéticos/normas , Testes Genéticos/métodos , Guias de Prática Clínica como Assunto
4.
Brain ; 146(12): 5098-5109, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516995

RESUMO

Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses 'solved' or 'possibly solved' ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% 'solved' and ∼13% 'possibly solved' outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Doenças Neuromusculares , Doenças do Sistema Nervoso Periférico , Humanos , Doenças Neuromusculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , DNA
5.
J Med Genet ; 59(2): 180-188, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33436523

RESUMO

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is an inherited muscular dystrophy clinically characterised by muscle weakness starting with the facial and upper extremity muscles. A disease model has been developed that postulates that failure in somatic repression of the transcription factor DUX4 embedded in the D4Z4 repeat on chromosome 4q causes FSHD. However, due to the position of the D4Z4 repeat close to the telomere and the complex genetic and epigenetic aetiology of FSHD, there is ongoing debate about the transcriptional deregulation of closely linked genes and their involvement in FSHD. METHOD: Detailed genetic characterisation and gene expression analysis of patients with clinically confirmed FSHD and control individuals. RESULTS: Identification of two FSHD families in which the disease is caused by repeat contraction and DUX4 expression from chromosome 10 due to a de novo D4Z4 repeat exchange between chromosomes 4 and 10. We show that the genetic lesion causal to FSHD in these families is physically separated from other candidate genes on chromosome 4. We demonstrate that muscle cell cultures from affected family members exhibit the characteristic molecular features of FSHD, including DUX4 and DUX4 target gene expression, without showing evidence for transcriptional deregulation of other chromosome 4-specific candidate genes. CONCLUSION: This study shows that in rare situations, FSHD can occur on chromosome 10 due to an interchromosomal rearrangement with the FSHD locus on chromosome 4q. These findings provide further evidence that DUX4 derepression is the dominant disease pathway for FSHD. Hence, therapeutic strategies should focus on DUX4 as the primary target.


Assuntos
Cromossomos Humanos Par 10 , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Adulto , Células Cultivadas , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 4 , Feminino , Estudos de Associação Genética , Humanos , Masculino , Linhagem , Sequências Repetitivas de Ácido Nucleico , Transcriptoma
6.
Hum Mol Genet ; 27(20): 3488-3497, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30281091

RESUMO

Facioscapulohumeral muscular dystrophy, known in genetic forms FSHD1 and FSHD2, is associated with D4Z4 repeat array chromatin relaxation and somatic derepression of DUX4 located in D4Z4. A complete copy of DUX4 is present on 4qA chromosomes, but not on the D4Z4-like repeats of chromosomes 4qB or 10. Normally, the D4Z4 repeat varies between 8 and 100 units, while in FSHD1 it is only 1-10 units. In the rare genetic form FSHD2, a combination of a 4qA allele with a D4Z4 repeat size of 8-20 units and heterozygous pathogenic variants in the chromatin modifier SMCHD1 causes DUX4 derepression and disease. In this study, we identified 11/79 (14%) FSHD2 patients with unusually large 4qA alleles of 21-70 D4Z4 units. By a combination of Southern blotting and molecular combing, we show that 8/11 (73%) of these unusually large 4qA alleles represent duplication alleles in which the long D4Z4 repeat arrays are followed by a small FSHD-sized D4Z4 repeat array duplication. We also show that these duplication alleles are associated with DUX4 expression. This duplication allele frequency is significantly higher than in controls (2.9%), FSHD1 patients (1.4%) and in FSHD2 patients with typical 4qA alleles of 8-20 D4Z4 units (1.5%). Segregation analysis shows that, similar to typical 8-20 units FSHD2 alleles, duplication alleles only cause FSHD in combination with a pathogenic variant in SMCHD1. We conclude that cis duplications of D4Z4 repeats explain DUX4 expression and disease presentation in FSHD2 families with unusual long D4Z4 repeats on 4qA chromosomes.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Mutação , Sequências Repetitivas de Ácido Nucleico , Linhagem Celular , Cromatina/metabolismo , Análise Mutacional de DNA , Feminino , Regulação da Expressão Gênica , Variação Estrutural do Genoma , Humanos , Masculino , Distrofia Muscular Facioescapuloumeral/metabolismo , Linhagem
7.
J Med Genet ; 56(12): 828-837, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31676591

RESUMO

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is associated with partial chromatin relaxation of the DUX4 retrogene containing D4Z4 macrosatellite repeats on chromosome 4, and transcriptional de-repression of DUX4 in skeletal muscle. The common form of FSHD, FSHD1, is caused by a D4Z4 repeat array contraction. The less common form, FSHD2, is generally caused by heterozygous variants in SMCHD1. METHODS: We employed whole exome sequencing combined with Sanger sequencing to screen uncharacterised FSHD2 patients for extra-exonic SMCHD1 mutations. We also used CRISPR-Cas9 genome editing to repair a pathogenic intronic SMCHD1 variant from patient myoblasts. RESULTS: We identified intronic SMCHD1 variants in two FSHD families. In the first family, an intronic variant resulted in partial intron retention and inclusion of the distal 14 nucleotides of intron 13 into the transcript. In the second family, a deep intronic variant in intron 34 resulted in exonisation of 53 nucleotides of intron 34. In both families, the aberrant transcripts are predicted to be non-functional. Deleting the pseudo-exon by CRISPR-Cas9 mediated genome editing in primary and immortalised myoblasts from the index case of the second family restored wild-type SMCHD1 expression to a level that resulted in efficient suppression of DUX4. CONCLUSIONS: The estimated intronic mutation frequency of almost 2% in FSHD2, as exemplified by the two novel intronic SMCHD1 variants identified here, emphasises the importance of screening for intronic variants in SMCHD1. Furthermore, the efficient suppression of DUX4 after restoring SMCHD1 levels by genome editing of the mutant allele provides further guidance for therapeutic strategies.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Adulto , Idoso , Alelos , Sistemas CRISPR-Cas/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Cromossomos Humanos Par 4/genética , Metilação de DNA/genética , Feminino , Edição de Genes/métodos , Expressão Gênica/genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Distrofia Muscular Facioescapuloumeral/terapia , Mutação/genética
8.
J Med Genet ; 56(10): 693-700, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31243061

RESUMO

BACKGROUND: Variants in the Structural Maintenance of Chromosomes flexible Hinge Domain-containing protein 1 (SMCHD1) can cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) and the unrelated Bosma arhinia microphthalmia syndrome (BAMS). In FSHD2, pathogenic variants are found anywhere in SMCHD1 while in BAMS, pathogenic variants are restricted to the extended ATPase domain. Irrespective of the phenotypic outcome, both FSHD2-associated and BAMS-associated SMCHD1 variants result in quantifiable local DNA hypomethylation. We compared FSHD2, BAMS and non-pathogenic SMCHD1 variants to derive genotype-phenotype relationships. METHODS: Examination of SMCHD1 variants and methylation of the SMCHD1-sensitive FSHD locus DUX4 in 187 FSHD2 families, 41 patients with BAMS and in control individuals. Analysis of variants in a three-dimensional model of the ATPase domain of SMCHD1. RESULTS: DUX4 methylation analysis is essential to establish pathogenicity of SMCHD1 variants. Although the FSHD2 mutation spectrum includes all types of variants covering the entire SMCHD1 locus, missense variants are significantly enriched in the extended ATPase domain. Identification of recurrent variants suggests disease-specific residues for FSHD2 and in BAMS, consistent with a largely disease-specific localisation of variants in SMCHD1. CONCLUSIONS: The localisation of missense variants within the ATPase domain of SMCHD1 may contribute to the differences in phenotypic outcome.


Assuntos
Atresia das Cóanas/genética , Proteínas Cromossômicas não Histona/genética , Microftalmia/genética , Distrofia Muscular Facioescapuloumeral/genética , Nariz/anormalidades , Adenosina Trifosfatases/genética , Metilação de DNA , Feminino , Variação Genética , Humanos , Masculino , Mutação , Mutação de Sentido Incorreto , Domínios Proteicos
9.
Am J Hum Genet ; 98(5): 1020-1029, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153398

RESUMO

Facioscapulohumeral dystrophy (FSHD) is associated with somatic chromatin relaxation of the D4Z4 repeat array and derepression of the D4Z4-encoded DUX4 retrogene coding for a germline transcription factor. Somatic DUX4 derepression is caused either by a 1-10 unit repeat-array contraction (FSHD1) or by mutations in SMCHD1, which encodes a chromatin repressor that binds to D4Z4 (FSHD2). Here, we show that heterozygous mutations in DNA methyltransferase 3B (DNMT3B) are a likely cause of D4Z4 derepression associated with low levels of DUX4 expression from the D4Z4 repeat and increased penetrance of FSHD. Recessive mutations in DNMT3B were previously shown to cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome. This study suggests that transcription of DUX4 in somatic cells is modified by variations in its epigenetic state and provides a basis for understanding the reduced penetrance of FSHD within families.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Repressão Epigenética/genética , Distrofia Muscular Facioescapuloumeral/genética , Mutação/genética , Penetrância , Sequências de Repetição em Tandem/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Criança , Pré-Escolar , Cromatina/genética , DNA (Citosina-5-)-Metiltransferases/química , Metilação de DNA , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Conformação Proteica , Homologia de Sequência de Aminoácidos , DNA Metiltransferase 3B
10.
Ann Neurol ; 84(5): 627-637, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30179273

RESUMO

OBJECTIVE: Facioscapulohumeral dystrophy (FSHD) is one of the most frequent heritable muscular dystrophies, with a large variety in age at onset and disease severity. The natural history and molecular characteristics of FSHD in childhood are incompletely understood. Our objective is to clinically and genetically characterize FSHD in childhood. METHODS: We performed a nationwide, single-investigator, natural history study on FSHD in childhood. RESULTS: Multiple-source recruitment resulted in 32 patients with FSHD (0-17 years), leading to an estimated prevalence of 1 in 100,000 children in The Netherlands. This series of 32 children with FSHD revealed a heterogeneous phenotype and genotype in childhood. The phenotypic hallmarks of FSHD in childhood are: facial weakness with normal or only mildly affected motor performance, decreased functional exercise capacity (6-minute walk test), lumbar hyperlordosis, and increased echo intensity on muscle ultrasonography. In addition, pain and fatigue were frequent and patients experienced a lower quality of life compared to healthy peers. In contrast to the literature on early-onset FSHD, systemic features such as hearing loss and retinal and cardiac abnormalities were infrequent and subclinical, and epilepsy and intellectual disability were absent. Genotypically, patients had a mean D4Z4 repeat array of 5 units (range, 2-9), and 14% of the mutations were de novo. INTERPRETATION: FSHD in childhood is more prevalent than previously known and the genotype resembles classic FSHD. Importantly, FSHD mainly affects functional exercise capacity and quality of life in children. As such, these results are paramount for counseling, clinical management, and stratification in clinical research. Ann Neurol 2018;84:635-645.


Assuntos
Distrofia Muscular Facioescapuloumeral , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Distrofia Muscular Facioescapuloumeral/complicações , Distrofia Muscular Facioescapuloumeral/epidemiologia , Distrofia Muscular Facioescapuloumeral/genética , Países Baixos/epidemiologia , Fenótipo , Estudos Prospectivos , Qualidade de Vida
11.
J Med Genet ; 55(7): 469-478, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29563141

RESUMO

BACKGROUND: 18p deletion syndrome is a rare disorder caused by partial or full monosomy of the short arm of chromosome 18. Clinical symptoms caused by 18p hemizygosity include cognitive impairment, mild facial dysmorphism, strabismus and ptosis. Among other genes, structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) is hemizygous in most patients with 18p deletions. Digenic inheritance of a SMCHD1 mutation and a moderately sized D4Z4 repeat on a facioscapulohumeral muscular dystrophy (FSHD) permissive genetic background of chromosome 4 can cause FSHD type 2 (FSHD2). OBJECTIVES: Since 12% of Caucasian individuals harbour moderately sized D4Z4 repeats on an FSHD permissive background, we tested if people with 18p deletions are at risk of developing FSHD. METHODS: To test our hypothesis we studied different cellular systems originating from individuals with 18p deletions not presenting FSHD2 phenotype for transcriptional and epigenetic characteristics of FSHD at D4Z4. Furthermore, individuals with an idiopathic muscle phenotype and an 18p deletion were subjected to neurological examination. RESULTS: Primary fibroblasts hemizygous for SMCHD1 have a D4Z4 chromatin structure comparable with FSHD2 concomitant with DUX4 expression after transdifferentiation into myocytes. Neurological examination of 18p deletion individuals from two independent families with a moderately sized D4Z4 repeat identified muscle features compatible with FSHD. CONCLUSIONS: 18p deletions leading to haploinsufficiency of SMCHD1, together with a moderately sized FSHD permissive D4Z4 allele, can associate with symptoms and molecular features of FSHD. We propose that patients with 18p deletion should be characterised for their D4Z4 repeat size and haplotype and monitored for clinical features of FSHD.


Assuntos
Proteínas Cromossômicas não Histona/genética , Transtornos Cromossômicos/genética , Epigênese Genética , Distrofia Muscular Facioescapuloumeral/genética , Adolescente , Adulto , Cromatina/genética , Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 18/genética , Metilação de DNA/genética , Feminino , Haploinsuficiência/genética , Humanos , Masculino , Pessoa de Meia-Idade , Monossomia/genética , Monossomia/patologia , Distrofia Muscular Facioescapuloumeral/epidemiologia , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Mutação , Fatores de Risco , Adulto Jovem
12.
Clin Genet ; 94(6): 521-527, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30211448

RESUMO

To determine how much of the clinical variability in facioscapulohumeral muscular dystrophy type 1 (FSHD1) can be explained by the D4Z4 repeat array size, D4Z4 methylation and familial factors, we included 152 carriers of an FSHD1 allele (23 single cases, 129 familial cases from 37 families) and performed state-of-the-art genetic testing, extensive clinical evaluation and quantitative muscle MRI. Familial factors accounted for 50% of the variance in disease severity (FSHD clinical score). The explained variance by the D4Z4 repeat array size for disease severity was limited (approximately 10%), and varied per body region (facial muscles, upper and lower extremities approximately 30%, 15% and 3%, respectively). Unaffected gene carriers had longer repeat array sizes compared to symptomatic individuals (7.3 vs 6.0 units, P = 0.000) and slightly higher Delta1 methylation levels (D4Z4 methylation corrected for repeat size, 0.96 vs -2.46, P = 0.048). The D4Z4 repeat array size and D4Z4 methylation contribute to variability in disease severity and penetrance, but other disease modifying factors must be involved as well. The larger effect of the D4Z4 repeat array on facial muscle involvement suggests that these muscles are more sensitive to the influence of the FSHD1 locus itself, whereas leg muscle involvement seems highly dependent on modifying factors.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Fenótipo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Biomarcadores , Feminino , Estudos de Associação Genética/métodos , Haplótipos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Penetrância , Índice de Gravidade de Doença , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 112(27): E3535-44, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26091879

RESUMO

Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic repressor with described roles in X inactivation and genomic imprinting, but Smchd1 is also critically involved in the pathogenesis of facioscapulohumeral dystrophy. The underlying molecular mechanism by which Smchd1 functions in these instances remains unknown. Our genome-wide transcriptional and epigenetic analyses show that Smchd1 binds cis-regulatory elements, many of which coincide with CCCTC-binding factor (Ctcf) binding sites, for example, the clustered protocadherin (Pcdh) genes, where we show Smchd1 and Ctcf act in opposing ways. We provide biochemical and biophysical evidence that Smchd1-chromatin interactions are established through the homodimeric hinge domain of Smchd1 and, intriguingly, that the hinge domain also has the capacity to bind DNA and RNA. Our results suggest Smchd1 imparts epigenetic regulation via physical association with chromatin, which may antagonize Ctcf-facilitated chromatin interactions, resulting in coordinated transcriptional control.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Genoma , Animais , Sítios de Ligação/genética , Western Blotting , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Fator de Ligação a CCCTC , Células Cultivadas , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Histonas/metabolismo , Masculino , Metilação , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/genética
14.
Hum Mol Genet ; 24(3): 659-69, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25256356

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD: MIM#158900) is a common myopathy with marked but largely unexplained clinical inter- and intra-familial variability. It is caused by contractions of the D4Z4 repeat array on chromosome 4 to 1-10 units (FSHD1), or by mutations in the D4Z4-binding chromatin modifier SMCHD1 (FSHD2). Both situations lead to a partial opening of the D4Z4 chromatin structure and transcription of D4Z4-encoded polyadenylated DUX4 mRNA in muscle. We measured D4Z4 CpG methylation in control, FSHD1 and FSHD2 individuals and found a significant correlation with the D4Z4 repeat array size. After correction for repeat array size, we show that the variability in clinical severity in FSHD1 and FSHD2 individuals is dependent on individual differences in susceptibility to D4Z4 hypomethylation. In FSHD1, for individuals with D4Z4 repeat arrays of 1-6 units, the clinical severity mainly depends on the size of the D4Z4 repeat. However, in individuals with arrays of 7-10 units, the clinical severity also depends on other factors that regulate D4Z4 methylation because affected individuals, but not non-penetrant mutation carriers, have a greater reduction of D4Z4 CpG methylation than can be expected based on the size of the pathogenic D4Z4 repeat array. In FSHD2, this epigenetic susceptibility depends on the nature of the SMCHD1 mutation in combination with D4Z4 repeat array size with dominant negative mutations being more deleterious than haploinsufficiency mutations. Our study thus identifies an epigenetic basis for the striking variability in onset and disease progression that is considered a clinical hallmark of FSHD.


Assuntos
Metilação de DNA , Repetições de Microssatélites , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Proteínas Nucleares/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 4/genética , Ilhas de CpG , Epigênese Genética , Variação Genética , Proteínas de Homeodomínio/genética , Humanos , Proteínas dos Microfilamentos , Distrofia Muscular Facioescapuloumeral/classificação , Fenótipo , Proteínas de Ligação a RNA
15.
J Med Genet ; 53(5): 348-55, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26831754

RESUMO

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is associated with an epigenetic defect on 4qter. Two clinically indistinguishable forms of FSHD are known, FSHD1 and FSHD2. FSHD1 is caused by contraction of the highly polymorphic D4Z4 macrosatellite repeat array on chromosome 4q35. FSHD2 is caused by pathogenic mutations of the SMCHD1 gene.Both genetic defects lead to D4Z4 DNA hypomethylation. In the presence of a polymorphic polyadenylation signal (PAS), DNA hypomethylation leads to inappropriate expression of the D4Z4-encoded DUX4 transcription factor in skeletal muscle. Currently, hypomethylation is not diagnostic per se because of the interference of non-pathogenic arrays and the lack of information about the presence of DUX4-PAS. METHODS: We investigated, by bisulfite sequencing, the DNA methylation levels of the region distal to the D4Z4 array selectively in PAS-positive alleles. RESULTS: Comparison of FSHD1, FSHD2 and Control subjects showed a highly significant difference of methylation levels in all CpGs tested. Importantly, using a cohort of 112 samples, one of these CpGs (CpG6) is able to discriminate the affected individuals with a sensitivity of 0.95 supporting this assay potential for FSHD diagnosis. Moreover, our study showed a relationship between PAS-specific methylation and severity of the disease. CONCLUSIONS: These data point to the CpGs distal to the D4Z4 array as a critical region reflecting multiple factors affecting the epigenetics of FSHD. Additionally, methylation analysis of this region allows the establishment of a rapid and sensitive tool for FSHD diagnosis.


Assuntos
Alelos , Cromossomos Humanos Par 4 , Metilação de DNA , Músculo Esquelético , Distrofia Muscular Facioescapuloumeral/genética , Epigenômica , Humanos
16.
Hum Mol Genet ; 23(20): 5342-52, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24861551

RESUMO

Facioscapulohumeral dystrophy (FSHD) is caused by decreased epigenetic repression of the D4Z4 macrosatellite array and recent studies have shown that this results in the expression of low levels of the DUX4 mRNA in skeletal muscle. Several other mechanisms have been suggested for FSHD pathophysiology and it remains unknown whether DUX4 expression can account for most of the molecular changes seen in FSHD. Since DUX4 is a transcription factor, we used RNA-seq to measure gene expression in muscle cells transduced with DUX4, and in muscle cells and biopsies from control and FSHD individuals. We show that DUX4 target gene expression is the major molecular signature in FSHD muscle together with a gene expression signature consistent with an immune cell infiltration. In addition, one unaffected individual without a known FSHD-causing mutation showed the expression of DUX4 target genes. This individual has a sibling with FSHD and also without a known FSHD-causing mutation, suggesting the presence of an unidentified modifier locus for DUX4 expression and FSHD. These findings demonstrate that the expression of DUX4 accounts for the majority of the gene expression changes in FSHD skeletal muscle together with an immune cell infiltration.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Adulto , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/imunologia , Análise de Sequência de RNA
17.
Am J Hum Genet ; 93(4): 744-51, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24075187

RESUMO

Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array on chromosome 4 to a size of 1-10 units. The residual number of D4Z4 units inversely correlates with clinical severity, but significant clinical variability exists. Each unit contains a copy of the DUX4 retrogene. Repeat contractions are associated with changes in D4Z4 chromatin structure that increase the likelihood of DUX4 expression in skeletal muscle, but only when the repeat resides in a genetic background that contains a DUX4 polyadenylation signal. Mutations in the structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) gene, encoding a chromatin modifier of D4Z4, also result in the increased likelihood of DUX4 expression in individuals with a rare form of FSHD (FSHD2). Because SMCHD1 directly binds to D4Z4 and suppresses somatic expression of DUX4, we hypothesized that SMCHD1 may act as a genetic modifier in FSHD1. We describe three unrelated individuals with FSHD1 presenting an unusual high clinical severity based on their upper-sized FSHD1 repeat array of nine units. Each of these individuals also carries a mutation in the SMCHD1 gene. Familial carriers of the FSHD1 allele without the SMCHD1 mutation were only mildly affected, suggesting a modifier effect of the SMCHD1 mutation. Knocking down SMCHD1 in FSHD1 myotubes increased DUX4 expression, lending molecular support to a modifier role for SMCHD1 in FSHD1. We conclude that FSHD1 and FSHD2 share a common pathophysiological pathway in which the FSHD2 gene can act as modifier for disease severity in families affected by FSHD1.


Assuntos
Proteínas Cromossômicas não Histona/genética , Distrofia Muscular Facioescapuloumeral/genética , Adolescente , Adulto , Idoso , Alelos , Sequência de Aminoácidos , Sequência de Bases , Criança , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fibras Musculares Esqueléticas/metabolismo , Mutação , Linhagem , Adulto Jovem
18.
Hum Mutat ; 36(7): 679-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25820463

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is most often associated with variegated expression in somatic cells of the normally repressed DUX4 gene within the D4Z4-repeat array. The most common form, FSHD1, is caused by a D4Z4-repeat array contraction to a size of 1-10 units (normal range 10-100 units). The less common form, FSHD2, is characterized by D4Z4 CpG hypomethylation and is most often caused by loss-of-function mutations in the structural maintenance of chromosomes hinge domain 1 (SMCHD1) gene on chromosome 18p. The chromatin modifier SMCHD1 is necessary to maintain a repressed D4Z4 chromatin state. Here, we describe two FSHD2 families with a 1.2-Mb deletion encompassing the SMCHD1 gene. Numerical aberrations of chromosome 18 are relatively common and the majority of 18p deletion syndrome (18p-) cases have, such as these FSHD2 families, only one copy of SMCHD1. Our finding therefore raises the possibility that 18p- cases are at risk of developing FSHD. To address this possibility, we combined genome-wide array analysis data with D4Z4 CpG methylation and repeat array sizes in individuals with 18p- and conclude that approximately 1:8 18p- cases might be at risk of developing FSHD.


Assuntos
Proteínas Cromossômicas não Histona/genética , Transtornos Cromossômicos/genética , Hemizigoto , Distrofia Muscular Facioescapuloumeral/genética , Adulto , Idoso , Deleção Cromossômica , Cromossomos Humanos Par 18/genética , Ilhas de CpG , Metilação de DNA , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
19.
Gut ; 62(4): 509-19, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22760007

RESUMO

OBJECTIVE: Refractory coeliac disease type II (RCDII) is a severe complication of coeliac disease (CD) characterised by aberrant intraepithelial lymphocytes (IELs) of unknown origin that display an atypical CD3(-)CD7(+)icCD3(+) phenotype. In approximately 40% of patients with RCDII these lymphocytes develop into an invasive lymphoma. In the current study we aimed to identify the physiological counterpart of these cells. DESIGN: RCDII cell lines were compared with T-cell receptor positive (TCR(+)) IEL (T-IEL) lines by microarray analysis, real-time quantitative PCR and flow cytometry. This information was used to identify cells with an RCDII-associated phenotype in duodenal biopsies from non-refractory individuals by multicolour flow cytometry. RESULTS: RCDII lines were transcriptionally distinct from T-IEL lines and expressed higher levels of multiple natural killer (NK) cell receptors. In addition to the CD3(-)CD7(+)icCD3(+) phenotype, the RCDII lines were distinguishable from other lymphocyte subsets by the absence of CD56, CD127 and CD34. Cells matching this surface lineage-negative (Lin(-)) CD7(+)CD127(-)CD34(-) phenotype expressed a functional interleukin-15 (IL-15) receptor and constituted a significant proportion of IELs in duodenal specimens of patients without CD, particularly children, and were also found in the thymus. In patients without CD, the Lin(-)CD7(+)CD127(-)CD34(-) subset was one of four subsets within the CD3(-)CD7(+)icCD3(+) population that could be distinguished on the basis of differential expression of CD56 and/or CD127. CONCLUSION: Our studies indicate that the CD3(-)CD7(+)icCD3(+) population is heterogeneous and reveal the existence of a Lin(-) subset that is distinct from T, B, NK and lymphoid tissue inducer cells. We speculate that this IL-15 responsive population represents the physiological counterpart of aberrant cells expanded in RCDII and transformed in RCDII-associated lymphoma.


Assuntos
Doença Celíaca/imunologia , Doença Celíaca/patologia , Duodeno/imunologia , Duodeno/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Linfócitos/imunologia , Linfócitos/patologia , Antígenos CD/imunologia , Biomarcadores/análise , Biópsia , Linhagem Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Antígenos de Linfócitos T/imunologia , Análise Serial de Tecidos
20.
Eur J Hum Genet ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664571

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is the third most common form of hereditary myopathy. Sixty per cent of the world's population lives in Asia, so a significant percentage of the world's FSHD participants is expected to live there. To date, most FSHD studies have involved individuals of European descent, yet small-scale studies of East-Asian populations suggest that the likelihood of developing FSHD may vary. Here, we present the first genetically confirmed FSHD cohort of Indian ancestry, which suggests a pathogenic FSHD1 allele size distribution intermediate between European and North-East Asian populations and more asymptomatic carriers of 4 unit and 5 unit FSHD1 alleles than observed in European populations. Our data provides important evidence of differences relevant to clinical diagnostics and underscores the need for global FSHD participation in research and trial-ready Indian FSHD cohorts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA