Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(1): e202210140, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321387

RESUMO

Ultra-small gold nanoparticles (UAuNPs) are extremely interesting for applications in nanomedicine thanks to their good stability, biocompatibility, long circulation time and efficient clearance pathways. UAuNPs engineered with glycans (Glyco-UAuNPs) emerged as excellent platforms for many applications since the multiple copies of glycans can mimic the multivalent effect of glycoside clusters. Herein, we unravel a straightforward photo-induced synthesis of Glyco-UAuNPs based on a reliable and robust microfluidic approach. The synthesis occurs at room temperature avoiding the use of any further chemical reductant, templating agents or co-solvents. Exploiting 1 H NMR spectroscopy, we showed that the amount of thiol-ligand exposed on the UAuNPs is linearly correlated to the ligand concentration in the initial mixture. The results pave the way towards the development of a programmable synthetic approach, enabling an accurate design of the engineered UAuNPs or smart hybrid nano-systems.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/química , Nanopartículas Metálicas/química , Microfluídica , Ligantes , Nanopartículas/química , Polissacarídeos/química
2.
Soft Matter ; 18(34): 6443-6452, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35983789

RESUMO

Biological methods for mosquito larvae control are completely biodegradable and have null or limited effects on nontarget organisms. However, commercially available products have a low residual activity, with the consequent need for multiple applications that inevitably increase costs and the risk of resistance phenomena insurgence. Smart delivery systems made of hydrogels proved their efficacy in increasing the action duration of biolarvicides up to several months, but the lack of an efficient baiting mechanism to strongly attract the target pest remains a problem in practical applications. In this work, we investigated two novel hydrogel-based formulations of completely natural composition for baiting and killing larvae of Aedes albopictus mosquitos. The proposed materials consist of charged crosslinked polysaccharides (chitosan and cellulose) and are specifically manufactured to float in water, simulating organic matter usually present at breeding sites. Within the hydrogels' matrix, yeast colonies of Saccharomyces cerevisiae were embedded as phagostimulants alongside a biolarvicide (Bacillus thuringiensis var. israelensis (Bti)). Despite the similar chemical nature and structure, chitosan-based hydrogels exhibited a markedly superior baiting potential compared to those made of cellulose and also succeeded in efficiently killing mosquito larvae just after a few hours from administration. We are confident that the proposed smart delivery hydrogel made of chitosan can be an enabling tool to attract mosquito larvae towards biopesticides of different nature without delocalizing active ingredients away from the breeding site and to simultaneously increase their residual activity, thus holding the potential of minimizing environmental pollution related to pest control and vector-borne disease prevention.


Assuntos
Aedes , Quitosana , Animais , Celulose , Quitosana/farmacologia , Hidrogéis/farmacologia , Larva , Controle de Mosquitos/métodos , Mosquitos Vetores , Controle Biológico de Vetores/métodos
3.
J Nanobiotechnology ; 20(1): 418, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123687

RESUMO

The cell/microenvironment interface is the starting point of integrin-mediated mechanotransduction, but many details of mechanotransductive signal integration remain elusive due to the complexity of the involved (extra)cellular structures, such as the glycocalyx. We used nano-bio-interfaces reproducing the complex nanotopographical features of the extracellular matrix to analyse the glycocalyx impact on PC12 cell mechanosensing at the nanoscale (e.g., by force spectroscopy with functionalised probes). Our data demonstrates that the glycocalyx configuration affects spatio-temporal nanotopography-sensitive mechanotransductive events at the cell/microenvironment interface. Opposing effects of major glycocalyx removal were observed, when comparing flat and specific nanotopographical conditions. The excessive retrograde actin flow speed and force loading are strongly reduced on certain nanotopographies upon strong reduction of the native glycocalyx, while on the flat substrate we observe the opposite trend. Our results highlight the importance of the glycocalyx configuration in a molecular clutch force loading-dependent cellular mechanism for mechanosensing of microenvironmental nanotopographical features.


Assuntos
Glicocálix , Mecanotransdução Celular , Actinas , Glicocálix/fisiologia , Integrinas , Percepção
4.
Part Fibre Toxicol ; 18(1): 23, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134756

RESUMO

BACKGROUND: Widespread use of silver in its different forms raises concerns about potential adverse effects after ingestion, the main exposure route for humans. The aim of this study was to investigate in CD-1 (ICR) male mice the tissue distribution and in vivo effects of 4-week oral exposure to 0.25 and 1 mg Ag/kg bw 10 nm citrate coated silver nanoparticles (AgNPs) and 1 mg Ag/kg bw silver acetate (AgAc) at the end of treatment (EoT) and after 4 weeks of recovery. RESULTS: There were no treatment-related clinical signs and mortality, and no significant effects on body and organ weights at the EoT and after recovery. Treatment-related changes in hematology and clinical chemistry were found after recovery, the most relevant being a dose-dependent lymphopenia and increased triglycerides in AgNP-treated mice, and increased levels of urea in all treated groups, associated with decreased albumin only in AgAc-treated mice. At the EoT the highest silver concentration determined by Triple Quadrupole ICP-MS analysis was found in the brain, followed by testis, liver, and spleen; much lower concentrations were present in the small intestine and kidney. Tissue silver concentrations were slightly higher after exposure to AgAc than AgNPs and dose dependent for AgNPs. After recovery silver was still present in the brain and testis, highlighting slow elimination. No histopathological changes and absence of silver staining by autometallography were observed in the organs of treated mice. At the EoT GFAP (astrocytes) immunoreactivity was significantly increased in the hippocampus of AgNP-treated mice in a dose-dependent manner and Iba1 (microglial cells) immunoreactivity was significantly increased in the cortex of 1 mg/kg bw AgNP-treated mice. After recovery, a significant reduction of Iba1 was observed in the cortex of all treated groups. TEM analysis of the hippocampus revealed splitting of basement membrane of the capillaries and swelling of astrocytic perivascular end-feet in 1 mg/kg bw AgNP- and AgAc-treated mice at the EoT. CONCLUSIONS: Our study revealed accumulation and slow clearance of silver in the brain after oral administration of 10 nm AgNPs and AgAc at low doses in mice, associated with effects on glial cells and ultrastructural alterations of the Blood-Brain Barrier.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Administração Oral , Animais , Encéfalo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Distribuição Tecidual
5.
Langmuir ; 36(4): 939-947, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31913638

RESUMO

Decorating thin-film solar cells with plasmonic nanoparticles is being pursued in order to improve device efficiency through increased scattering and local field enhancement. Gold nanoparticles are particularly interesting due to their chemical inertness and plasmon resonance in the visible range of the spectrum. In this work, gold nanoparticles fabricated by a gas aggregation nanoparticle source and embedded in a-Si (a commercial solar cell material) are studied using X-ray photoelectron spectroscopy, transmission electron microscopy, electron energy-loss spectroscopy, and energy-dispersive X-ray spectroscopy. The formation of gold silicide around the nanoparticles is investigated, as it has important consequences for the optical and electronic properties of the structures. Different from previous studies, in which the silicide formation is observed for gold nanoparticles and thin films grown on top of crystalline silicon or silica, it is found that silicide formation is largely enhanced around the nanoparticles, owing to their increased surface/volume ratio. A detailed gold silicide formation mechanism is presented based on the results, and strategies for optimizing the design of plasmonically enhanced solar cells with gold nanoparticles encapsulated in a-Si are discussed.

6.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887407

RESUMO

The urgent need to develop a detection system for Staphylococcus aureus, one of the most common causes of infection, is prompting research towards novel approaches and devices, with a particular focus on point-of-care analysis. Biosensors are promising systems to achieve this aim. We coupled the selectivity and affinity of aptamers, short nucleic acids sequences able to recognize specific epitopes on bacterial surface, immobilized at high density on a nanostructured zirconium dioxide surface, with the rational design of specifically interacting fluorescent peptides to assemble an easy-to-use detection device. We show that the displacement of fluorescent peptides upon the competitive binding of S. aureus to immobilized aptamers can be detected and quantified through fluorescence loss. This approach could be also applied to the detection of other bacterial species once aptamers interacting with specific antigens will be identified, allowing the development of a platform for easy detection of a pathogen without requiring access to a healthcare environment.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Staphylococcus aureus , Peptídeos , Staphylococcus aureus/isolamento & purificação
7.
Acc Chem Res ; 50(2): 231-239, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28116907

RESUMO

The development of smart prosthetics, scaffolds, and biomaterials for tissue engineering and organ-on-a-chip devices heavily depends on the understanding and control of biotic/abiotic interfaces. In recent years, the nanometer scale emerged as the predominant dimension for processes impacting on protein adsorption and cellular responses on surfaces. In this context, the extracellular matrix (ECM) can be seen as the prototype for an intricate natural structure assembled by nanoscale building blocks forming highly variable nanoscale configurations, dictating cellular behavior and fate. How exactly the ECM nanotopography influences mechanotransduction, that is, the cellular capacity to convert information received from the ECM into appropriate responses, remains partially understood due to the complexity of the involved biological structures, limiting also the attempts to artificially reproduce the nanoscale complexity of the ECM. In this Account, we describe and discuss our strategies for the development of an efficient and large-scale bottom-up approach to fabricate surfaces with multiscale controlled disorder as substrates to study quantitatively the effect of nanoscale topography on biological entities. Our method is based on the use of supersonic cluster beam deposition (SCBD) to assemble, on a substrate, neutral clusters produced in the gas phase and accelerated by a supersonic expansion. The assembling of clusters in the ballistic deposition regime follows simple scaling laws, allowing the quantitative control of surface roughness and asperity layout over large areas. Due to their biocompatibility, we focused on transition metal oxide nanostructured surfaces assembled by titania and zirconia clusters. We demonstrated the engineering of structural and functional properties of the cluster-assembled surfaces with high relevance for interactions at the biotic/abiotic interface. We observed that isoelectric point and wettability, crucial parameters for the adhesion of biological entities on surfaces, are strongly influenced and controlled by the nanoscale roughness. By developing a high-throughput method (protein surface interaction microarray, PSIM), we characterized quantitatively the capacity of the nanostructured surfaces to adsorb proteins, showing that with increasing roughness the adsorption rises beyond what could be expected by the increase in specific area, paralleled by an almost linear decrease in protein binding affinity. We also determined that the spatial layout of the surface asperities effectively perceived by the cells mimics at the nanoscale the topographical ECM characteristics. The interaction with these features consequently regulates parameters significant for cell adhesion and mechanotransductive signaling, such as integrin clustering, focal adhesion maturation, and the correlated cellular mechanobiology, eventually impacting the cellular program and differentiation, as we specifically showed for neuronal cells.


Assuntos
Nanoestruturas/química , Proteínas/química , Adsorção , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Adesão Celular/fisiologia , Diferenciação Celular , Matriz Extracelular/metabolismo , Células PC12 , Proteínas/metabolismo , Ratos , Propriedades de Superfície , Titânio/química , Água/química , Zircônio/química
8.
Nanotechnology ; 29(5): 055704, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29176062

RESUMO

The role of substrate topography in phenotype expression of in vitro cultured cells has been widely assessed. However, the production of the nanostructured interface via the deposition of sol-gel synthesized nanoparticles (NPs) has not yet been fully exploited. This is also evidenced by the limited number of studies correlating the morphological, structural and chemical properties of the grown thin films with those of the sol-gel 'brick' within the framework of the bottom-up approach. Our work intends to go beyond this drawback presenting an accurate investigation of sol-gel TiO2 NPs shaped as spheres and rods. They have been fully characterized by complementary analytical techniques both suspended in apolar solvents, by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR) and after deposition on substrates (solid state configuration) by transmission electron microscopy (TEM) and powder x-ray diffraction (PXRD). In the case of suspended anisotropic rods, the experimental DLS data, analyzed by the Tirado-Garcia de la Torre model, present the following ranges of dimensions: 4-5 nm diameter (∅) and 11-15 nm length (L). These results are in good agreement with that obtained by the two solid state techniques, namely 3.8(9) nm ∅ and 13.8(2.5) nm L from TEM and 5.6(1) ∅ and 13.3(1) nm L from PXRD data. To prove the suitability of the supported sol-gel NPs for biological issues, spheres and rods have been separately deposited on coverslips. The cell response has been ascertained by evaluating the adhesion of the epithelial cell line Madin-Darby canine kidney. The cellular analysis showed that titania films promote cell adhesion as well clustering organization, which is a distinguishing feature of this type of cell line. Thus, the use of nanostructured substrates via sol-gel could be considered a good candidate for cell culture with the further advantages of likely scalability and interfaceability with many different materials usable as supports.


Assuntos
Coloides/química , Nanoestruturas/química , Transição de Fase , Titânio/química , Animais , Proliferação de Células , Cães , Células Madin Darby de Rim Canino , Nanosferas/química , Nanosferas/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Ácido Oleico/química , Tamanho da Partícula , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
9.
Biomacromolecules ; 18(2): 452-460, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28030952

RESUMO

Poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are among the most studied systems for drug and gene targeting. So far, the synthesis of stable and uniform PLGA NPs has involved the use of a large excess of polyvinyl surfactants such as poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP), whose removal requires multistep purification procedures of high ecological and economic impact. Hence the development of environment-friendly and cost-effective synthetic procedures for the synthesis of PLGA NPs would effectively boost their use in clinics. This work aims to address this issue by investigating more efficacious alternatives to the so far employed polyvinyl surfactants. More specifically, we developed an innovative synthetic process to achieve stable and uniformly distributed PLGA NPs that involves the use of calcium stearate (CSt), gaining benefits of its high biocompatibility and efficacy at low concentrations and avoiding consequently expensive purification steps. With the help of minimum quantities of polysorbate 60 and sorbitane monostearate, CSt-stabilized PLGA NPs with different sizes and structures were synthesized. The influence of CSt on the encapsulation efficiency of bioactive molecules has been also investigated. The effective encapsulation of both hydrophobic (curcumin) and hydrophilic (fibrinogen labeled with Alexa647) biomolecules into NPs was demonstrated by confocal microscopy, and their release quantified by spectrofluorimetric analyses. Finally, degradation and cytotoxicity studies showed that CSt stabilized NPs were stable under physiological conditions and with good biocompatibility, thus looking promising for further investigation as controlled release devices.


Assuntos
Portadores de Fármacos/química , Ácido Láctico/química , Macrófagos/citologia , Nanopartículas/química , Ácido Poliglicólico/química , Álcool de Polivinil/química , Ácidos Esteáricos/química , Animais , Proliferação de Células , Células Cultivadas , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tensoativos
10.
Nanotechnology ; 27(7): 075606, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26789694

RESUMO

Achieving the required control of dopant distribution and selectivity for nanostructured semiconducting building block is a key issue for a large variety of applications. A promising strategy is monolayer doping (MLD), which consists in the creation of a well-ordered monolayer of dopant-containing molecules bonded to the surface of the substrate. In this work, we synthesize a P δ-layer embedded in a SiO2 matrix by MLD. Using a multi-technique approach based on time of flight secondary ion mass spectrometry (ToF-SIMS) and Rutherford backscattering spectrometry (RBS) analyses, we characterize the tuning of P dose as a function of the processing time and temperature. We found the proper conditions for a full grafting of the molecules, reaching a maximal dose of 8.3 × 10(14) atoms/cm(2). Moreover, using 1D rate equation model, we model P diffusion in SiO2 after annealing and we extract a P diffusivity in SiO2 of 1.5 × 10(17) cm(2) s(-1).

11.
Part Fibre Toxicol ; 13: 12, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26926244

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size and coating on tissue distribution and toxicity of AgNPs after intravenous administration in mice, and compare the results with those obtained after silver acetate administration. METHODS: Male CD-1(ICR) mice were intravenously injected with AgNPs of different sizes (10 nm, 40 nm, 100 nm), citrate-or polyvinylpyrrolidone-coated, at a single dose of 10 mg/kg bw. An equivalent dose of silver ions was administered as silver acetate. Mice were euthanized 24 h after the treatment, and silver quantification by ICP-MS and histopathology were performed on spleen, liver, lungs, kidneys, brain, and blood. RESULTS: For all particle sizes, regardless of their coating, the highest silver concentrations were found in the spleen and liver, followed by lung, kidney, and brain. Silver concentrations were significantly higher in the spleen, lung, kidney, brain, and blood of mice treated with 10 nm AgNPs than those treated with larger particles. Relevant toxic effects (midzonal hepatocellular necrosis, gall bladder hemorrhage) were found in mice treated with 10 nm AgNPs, while in mice treated with 40 nm and 100 nm AgNPs lesions were milder or negligible, respectively. In mice treated with silver acetate, silver concentrations were significantly lower in the spleen and lung, and higher in the kidney than in mice treated with 10 nm AgNPs, and a different target organ of toxicity was identified (kidney). CONCLUSIONS: Administration of the smallest (10 nm) nanoparticles resulted in enhanced silver tissue distribution and overt hepatobiliary toxicity compared to larger ones (40 and 100 nm), while coating had no relevant impact. Distinct patterns of tissue distribution and toxicity were observed after silver acetate administration. It is concluded that if AgNPs become systemically available, they behave differently from ionic silver, exerting distinct and size-dependent effects, strictly related to the nanoparticulate form.


Assuntos
Nanopartículas , Prata/farmacocinética , Prata/toxicidade , Acetatos/administração & dosagem , Acetatos/farmacocinética , Acetatos/toxicidade , Animais , Encéfalo/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ácido Cítrico/química , Doenças da Vesícula Biliar/induzido quimicamente , Doenças da Vesícula Biliar/patologia , Hemorragia/induzido quimicamente , Hemorragia/patologia , Injeções Intravenosas , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos ICR , Necrose , Tamanho da Partícula , Povidona/química , Medição de Risco , Prata/administração & dosagem , Prata/sangue , Prata/química , Compostos de Prata/administração & dosagem , Compostos de Prata/farmacocinética , Compostos de Prata/toxicidade , Baço/metabolismo , Distribuição Tecidual
12.
J Nanobiotechnology ; 14: 18, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26955876

RESUMO

BACKGROUND: Thanks to mechanotransductive components cells are competent to perceive nanoscale topographical features of their environment and to convert the immanent information into corresponding physiological responses. Due to its complex configuration, unraveling the role of the extracellular matrix is particularly challenging. Cell substrates with simplified topographical cues, fabricated by top-down micro- and nanofabrication approaches, have been useful in order to identify basic principles. However, the underlying molecular mechanisms of this conversion remain only partially understood. RESULTS: Here we present the results of a broad, systematic and quantitative approach aimed at understanding how the surface nanoscale information is converted into cell response providing a profound causal link between mechanotransductive events, proceeding from the cell/nanostructure interface to the nucleus. We produced nanostructured ZrO2 substrates with disordered yet controlled topographic features by the bottom-up technique supersonic cluster beam deposition, i.e. the assembling of zirconia nanoparticles from the gas phase on a flat substrate through a supersonic expansion. We used PC12 cells, a well-established model in the context of neuronal differentiation. We found that the cell/nanotopography interaction enforces a nanoscopic architecture of the adhesion regions that affects the focal adhesion dynamics and the cytoskeletal organization, which thereby modulates the general biomechanical properties by decreasing the rigidity of the cell. The mechanotransduction impacts furthermore on transcription factors relevant for neuronal differentiation (e.g. CREB), and eventually the protein expression profile. Detailed proteomic data validated the observed differentiation. In particular, the abundance of proteins that are involved in adhesome and/or cytoskeletal organization is striking, and their up- or downregulation is in line with their demonstrated functions in neuronal differentiation processes. CONCLUSION: Our work provides a deep insight into the molecular mechanotransductive mechanisms that realize the conversion of the nanoscale topographical information of SCBD-fabricated surfaces into cellular responses, in this case neuronal differentiation. The results lay a profound cell biological foundation indicating the strong potential of these surfaces in promoting neuronal differentiation events which could be exploited for the development of prospective research and/or biomedical applications. These applications could be e.g. tools to study mechanotransductive processes, improved neural interfaces and circuits, or cell culture devices supporting neurogenic processes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanoestruturas/administração & dosagem , Zircônio/administração & dosagem , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Células PC12 , Ratos , Propriedades de Superfície/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
Mol Imaging ; 142015.
Artigo em Inglês | MEDLINE | ID: mdl-26044881

RESUMO

The main scientific issue hindering the development of tissue engineering technologies is the lack of proper vascularization. Among the various approaches developed for boosting vascularization, scaffold design has attracted increasing interest over the last few years. The aim of this article is to illustrate a scaffold design strategy for enhancing vascularization based on sacrificial microfabrication of embedded microchannels. This approach was combined with an innovative poly(ether urethane urea) (PEUtU) porous scaffold to provide an alternative graft substitute material for the treatment of tissue defects. Fluorescent and chemiluminescent imaging combined with computed tomography were used to study the behavior of the scaffold composition within living subjects by analyzing angiogenesis and inflammation processes and observing the variation in x-ray absorption, respectively. For this purpose, an IntegriSense 680 probe was used in vivo for the localization and quantification of integrin αvß3, due to its critical involvement in angiogenesis, and a XenoLight RediJect Inflammation Probe for the study of the decline in inflammation progression during healing. Overall, the collected data suggest the advantages of embedding a synthetic vascular network into a PEUtU porous matrix to enhance in vivo tissue integration, maturation, and regeneration. Moreover, our imaging approach proved to be an efficient and versatile tool for scaffold in vivo testing.


Assuntos
Diagnóstico por Imagem/métodos , Neovascularização Fisiológica , Alicerces Teciduais/química , Animais , Feminino , Inflamação/patologia , Fenômenos Mecânicos , Camundongos , Porosidade , Tomografia Computadorizada por Raios X
14.
J Nanobiotechnology ; 11: 35, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24119372

RESUMO

BACKGROUND: Substrate nanoscale topography influences cell proliferation and differentiation through mechanisms that are at present poorly understood. In particular the molecular mechanism through which cells 'sense' and adapt to the substrate and activate specific intracellular signals, influencing cells survival and behavior, remains to be clarified. RESULTS: To characterize these processes at the molecular level we studied the differentiation of PC12 cells on nanostructured TiO2 films obtained by supersonic cluster beam deposition.Our findings indicate that, in PC12 cells grown without Nerve Growth Factor (NGF), the roughness of nanostructured TiO2 triggers neuritogenesis by activating the expression of nitric oxide synthase (NOS) and the phospho-extracellular signal-regulated kinase 1/2 (pERK1/2) signaling. Differentiation is associated with an increase in protein nitration as observed in PC12 cells grown on flat surfaces in the presence of NGF. We demonstrate that cell differentiation and protein nitration induced by topography are not specific for PC12 cells but can be regarded as generalized effects produced by the substrate on different neuronal-like cell types, as shown by growing the human neuroblastoma SH-SY5Y cell line on nanostructured TiO2. CONCLUSION: Our data provide the evidence that the nitric oxide (NO) signal cascade is involved in the differentiation process induced by nanotopography, adding new information on the mechanism and proteins involved in the neuritogenesis triggered by the surface properties.


Assuntos
Materiais Biocompatíveis/química , Mecanotransdução Celular , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Titânio/química , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Crescimento Neural/farmacologia , Neuritos/metabolismo , Neuritos/ultraestrutura , Óxido Nítrico Sintase Tipo II/genética , Células PC12 , Ratos , Propriedades de Superfície , Titânio/farmacologia , Tirosina/análogos & derivados , Tirosina/metabolismo
15.
PLoS One ; 18(12): e0295665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096210

RESUMO

Mosquito control is of paramount importance, in particular, in light of the major environmental alterations associated with human activities, from climate change to the altered distribution of pathogens, including those transmitted by Arthropods. Here, we used the common house mosquito, Culex pipiens to test the efficacy of MosChito raft, a novel tool for mosquito larval control. MosChito raft is a floating hydrogel matrix, composed of chitosan, genipin and yeast cells, as bio-attractants, developed for the delivery of a Bacillus thuringiensis israeliensis (Bti)-based bioinsecticide to mosquito larvae. To this aim, larvae of Cx. pipiens were collected in field in Northern Italy and a novel colony of mosquito species (hereafter: Trescore strain) was established. MosChito rafts, containing the Bti-based formulation, were tested on Cx. pipiens larvae from the Trescore strain to determine the doses to be used in successive experiments. Thus, bioassays with MosChito rafts were carried out under semi-field conditions, both on larvae from the Trescore strain and on pools of larvae collected from the field, at different developmental stages. Our results showed that MosChito raft is effective against Cx. pipiens. In particular, the observed mortality was over 50% after two days exposure of the larvae to MosChito rafts, and over 70-80% at days three to four, in both laboratory and wild larvae. In conclusion, our results point to the MosChito raft as a promising tool for the eco-friendly control of a mosquito species that is not only a nuisance insect but is also an important vector of diseases affecting humans and animals.


Assuntos
Bacillus thuringiensis , Culex , Animais , Humanos , Larva , Controle de Mosquitos/métodos , Saccharomyces cerevisiae , Microdomínios da Membrana , Mosquitos Vetores
16.
ACS Appl Bio Mater ; 6(7): 2712-2724, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37343191

RESUMO

Devices for in vitro culture of three-dimensional (3D) skeletal muscle tissues have multiple applications, including tissue engineering and muscle-powered biorobotics. In both cases, it is crucial to recreate a biomimetic environment by using tailored scaffolds at multiple length scales and to administer prodifferentiative biophysical stimuli (e.g., mechanical loading). On the contrary, there is an increasing need to develop flexible biohybrid robotic devices capable of maintaining their functionality beyond laboratory settings. In this study, we describe a stretchable and perfusable device to sustain cell culture and maintenance in a 3D scaffold. The device mimics the structure of a muscle connected to two tendons: Tendon-Muscle-Tendon (TMT). The TMT device is composed of a soft (E ∼ 6 kPa) porous (pore diameter: ∼650 µm) polyurethane scaffold, encased within a compliant silicone membrane to prevent medium evaporation. Two tendon-like hollow channels interface the scaffold with a fluidic circuit and a stretching device. We report an optimized protocol to sustain C2C12 adhesion by coating the scaffold with polydopamine and fibronectin. Then, we show the procedure for the soft scaffold inclusion in the TMT device, demonstrating the device's ability to bear multiple cycles of elongations, simulating a protocol for cell mechanical stimulation. By using computational fluid dynamic simulations, we show that a flow rate of 0.62 mL/min ensures a wall shear stress value safe for cells (<2 Pa) and 50% of scaffold coverage by an optimal fluid velocity. Finally, we demonstrate the effectiveness of the TMT device to sustain cell viability under perfusion for 24 h outside of the CO2 incubator. We believe that the proposed TMT device can be considered an interesting platform to combine several biophysical stimuli, aimed at boosting skeletal muscle tissue differentiation in vitro, opening chances for the development of muscle-powered biohybrid soft robots with long-term operability in real-world environments.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Músculo Esquelético , Diferenciação Celular
17.
Nanomaterials (Basel) ; 13(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903670

RESUMO

We present an investigation of the effects on BxPC3 pancreatic cancer cells of proton therapy combined with hyperthermia, assisted by magnetic fluid hyperthermia performed with the use of magnetic nanoparticles. The cells' response to the combined treatment has been evaluated by means of the clonogenic survival assay and the estimation of DNA Double Strand Breaks (DSBs). The Reactive Oxygen Species (ROS) production, the tumor cell invasion and the cell cycle variations have also been studied. The experimental results have shown that the combination of proton therapy, MNPs administration and hyperthermia gives a clonogenic survival that is much smaller than the single irradiation treatment at all doses, thus suggesting a new effective combined therapy for the pancreatic tumor. Importantly, the effect of the therapies used here is synergistic. Moreover, after proton irradiation, the hyperthermia treatment was able to increase the number of DSBs, even though just at 6 h after the treatment. Noticeably, the magnetic nanoparticles' presence induces radiosensitization effects, and hyperthermia increases the production of ROS, which contributes to cytotoxic cellular effects and to a wide variety of lesions including DNA damage. The present study indicates a new way for clinical translation of combined therapies, also in the vision of an increasing number of hospitals that will use the proton therapy technique in the near future for different kinds of radio-resistant cancers.

18.
Eur Radiol Exp ; 7(1): 18, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032383

RESUMO

BACKGROUND: The role of computed tomography (CT) in the diagnosis and characterization of coronavirus disease 2019 (COVID-19) pneumonia has been widely recognized. We evaluated the performance of a software for quantitative analysis of chest CT, the LungQuant system, by comparing its results with independent visual evaluations by a group of 14 clinical experts. The aim of this work is to evaluate the ability of the automated tool to extract quantitative information from lung CT, relevant for the design of a diagnosis support model. METHODS: LungQuant segments both the lungs and lesions associated with COVID-19 pneumonia (ground-glass opacities and consolidations) and computes derived quantities corresponding to qualitative characteristics used to clinically assess COVID-19 lesions. The comparison was carried out on 120 publicly available CT scans of patients affected by COVID-19 pneumonia. Scans were scored for four qualitative metrics: percentage of lung involvement, type of lesion, and two disease distribution scores. We evaluated the agreement between the LungQuant output and the visual assessments through receiver operating characteristics area under the curve (AUC) analysis and by fitting a nonlinear regression model. RESULTS: Despite the rather large heterogeneity in the qualitative labels assigned by the clinical experts for each metric, we found good agreement on the metrics compared to the LungQuant output. The AUC values obtained for the four qualitative metrics were 0.98, 0.85, 0.90, and 0.81. CONCLUSIONS: Visual clinical evaluation could be complemented and supported by computer-aided quantification, whose values match the average evaluation of several independent clinical experts. KEY POINTS: We conducted a multicenter evaluation of the deep learning-based LungQuant automated software. We translated qualitative assessments into quantifiable metrics to characterize coronavirus disease 2019 (COVID-19) pneumonia lesions. Comparing the software output to the clinical evaluations, results were satisfactory despite heterogeneity of the clinical evaluations. An automatic quantification tool may contribute to improve the clinical workflow of COVID-19 pneumonia.


Assuntos
COVID-19 , Aprendizado Profundo , Pneumonia , Humanos , SARS-CoV-2 , Pulmão/diagnóstico por imagem , Software
19.
Gels ; 8(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35448105

RESUMO

The development of Fricke gel (FG) dosimeters based on poly(vinyl alcohol) (PVA) as the gelling agent and glutaraldehyde (GTA) as the cross-linker has enabled significant improvements in the dose response and the stability over time of spatial radiation dose distributions. However, a standard procedure for preparing FG in terms of reagent concentrations is still missing in the literature. This study aims to investigate, by means of spectrophotometric analyses, how the sensitivity to the radiation dose and the range of linearity of the dose-response curve of PVA-GTA-FG dosimeters loaded with xylenol orange sodium salt (XO) are influenced by ferrous ammonium sulphate (FAS) and XO concentrations. Moreover, the effect of different concentrations of such compounds on self-oxidation phenomena in the dosimeters was evaluated. PVA-GTA-FG dosimeters were prepared using XO concentrations in the range 0.04-0.80 mM and FAS in the range 0.05-5.00 mM. The optical absorbance properties and the dose response of FG were investigated in the interval 0.0-42.0 Gy. The results demonstrate that the amount of FAS and XO determines both the sensitivity to the absorbed dose and the interval of linearity of the dose-response curve. The study suggests that the best performances of FG dosimeters for spectrophotometric analyses can be obtained using 1.00-0.40 mM and 0.200-0.166 mM concentrations of FAS and XO, respectively.

20.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080699

RESUMO

Thermogelling amphiphilic block copolymers have been widely investigated in the development of pharmaceutical drug carriers. In particular, thermosensitive gels based on poloxamer 407 (P407) have great potential for periodontal disease treatment, thanks to their ability to be liquid at room temperature and become viscous gels at body temperature. However, some problems, related to short in situ residence time, reduce their feasible clinical use. Thus, in order to improve the effective applicability of these materials, we studied how P407 thermogels are affected by the pH and by the inclusion of different hydrophilic polymers, used as excipients for increasing the gel stiffness. For this scope, a complete chemical-physical characterization of the synthesized gels is provided, in terms of determination of sol-gel transition temperature, viscosity and erosion degree. The data are correlated according to a statistical multivariate approach based on Principal Component Analysis and their mucoadhesion properties are also tested by Tapping mode-Atomic Force Microscopy (TM-AFM) imaging. Finally, we studied how the different P407 formulations are able to influence the release pathway of two antibacterial drugs (i.e., chlorhexidine digluconate and doxycycline hyclate) largely used in oral diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA