RESUMO
Numerous studies have focused on the remarkable adhesive properties of polydopamine, which can bind to substrates with a wide range of surface energies, even under aqueous conditions. This behavior suggests that polydopamine may be an attractive option as a surface treatment in structural bonding applications, where good bond durability is required. Here, we assessed polydopamine as a surface treatment for bonding aluminum plates with an epoxy resin. A model epoxy adhesive consisting of diglycidyl ether of bisphenol A (DGEBA) and Jeffamine D230 polyetheramine was employed, and lap shear measurements (ASTM D1002 10) were made (i) under dry conditions to examine initial bond strength and (ii) after exposure to hot/wet (63 °C in water for 14 days) conditions to assess bond durability. Surprisingly, our results showed that polydopamine alone as a surface treatment provided no benefit beyond that obtained by exposing the substrates to an alkaline solution of tris buffer used for the deposition of polydopamine. This implies that polydopamine has a potential Achilles' heel, namely, the formation of a weak boundary layer that was identified using X-ray photoelectron spectroscopy (XPS) of the fractured surfaces. In fact, for longer deposition times (2.5 and 18 h), the tris buffer-treated surface outperformed the polydopamine surface treatments, suggesting that tris buffer plays a unique role in improving adhesive performance even in the absence of polydopamine. We further showed that the use of polydopamine-3-aminopropyltriethoxysilane (APTES) hybrid surface treatments provided significant improvements in bond durability at extended deposition times relative to both polydopamine and an untreated control.
Assuntos
Compostos Benzidrílicos/química , Indóis/química , Fenóis/química , Polímeros/química , Compostos de Epóxi/química , Espectroscopia Fotoeletrônica , Propilaminas/química , Silanos/química , Propriedades de SuperfícieRESUMO
We use molecular simulations and experiments to rationalize the properties of a class of networks based on dicyclopentadiene (DCPD), a polymer with excellent fracture toughness and a high glass transition temperature (Tg), copolymerized with 5-norbornene-2-methanol (NBOH). DCPD is a highly non-polar hydrocarbon, while NBOH contains a hydroxy group, introducing polar functionality and hydrogen bonds (H-bonds). NBOH thus represents a possible route to improve the chemical compatibility of DCPD-based networks with less-hydrophobic materials. We systematically vary the NBOH content (polar chemistry) in DCPD networks, while keeping other network parameters nearly constant, including the molecular weight between cross-links, chain rigidity, and Tg. Using molecular dynamics (MD) simulations, we quantify the thermovolumetric and mechanical properties, including Tg, cohesive energy density, stiffness, and yield strength. We compare these results with experiments on networks of similar composition, finding good agreement. The relation between these properties and polar chemistry are studied by examining a secondary network of physical cross-links, formed by hydrogen bonds between NBOH units. Further, we examine nanovoid formation, an energy dissipation mechanism hypothesized to contribute to the toughness of pDCPD. Using metadynamics to accelerate sampling, we quantify the nanovoid nucleation rate under hydrostatic tension, similar to the stress state in the plastic zone preceding a crack tip. Small additions of NBOH have minimal effect, but the rate drops steeply with larger amounts. Several properties are mapped at nanometer scales, including stiffness and mobility, and associated with void nucleation. Estimates of the length- and time-scale of the plastic zone near a crack tip are used in discussing nanovoid formation as a plausible toughening mechanism in these materials. Overall, the results suggest that pDCPD tolerates the addition of some polar chemistry without degrading its excellent mechanical properties.
RESUMO
The apparent molecular weight between crosslinks (Mc,a) in a polymer network plays a fundamental role in the network mechanical response. We systematically varied Mc,a independent of strong noncovalent bonding by using ring-opening metathesis polymerization (ROMP) to co-polymerize dicyclopentadiene (DCPD) with a chain extender that increases Mc,a or a di-functional crosslinker that decreases Mc,a. We compared the ROMP series quasi-static modulus (E), tensile yield stress (σy), and fracture toughness (KIC and GIC) in the glassy regime with literature data for more polar thermosets. ROMP resins showed high KIC (>1.5 MPa m0.5), high GIC (>1000 J m-2), and 4-5 times higher high rate impact resistance than typical polar thermosets with similar Tg values (100 °C to 178 °C). The overall E values were lower for ROMP systems. The σy dependence on Mc,a and T-Tg for ROMP resins was qualitatively similar to more polar thermosets, but the overall σy values were lower. In contrast to more polar thermosets, the KIC and GIC values of the ROMP resins showed strong Mc,a and T-Tg dependence. High rate impact (â¼104-105 s-1) trends were similar to the KIC and GIC behavior, but were also correlated to σy. Overall, a ductile failure mode was observed for quasi-static and high rate results for a linear ROMP polymer (Mc,a = 1506 g mol-1 due to chain entanglement), and this gradually transitioned to a fully brittle failure mode for highly crosslinked ROMP polymers (Mc,a ≤ 270 g mol-1). Molecular dynamics (MD) simulations showed that low Mc,a ROMP resins were more likely to form molecular scale nanovoids. The higher chain stiffness in low Mc,a ROMP resins inhibited stress relaxation in the vicinity of these nanovoids, which correlated with brittle mechanical responses. Overall, these differences in mechanical properties were attributed to the weak non-covalent interactions in ROMP resins.
RESUMO
Polydopamine coatings are of interest due to the fact that they can promote adhesion to a broad range of materials and can enable a variety of applications. However, the polydopamine-substrate interaction is often noncovalent. To broaden the potential applications of polydopamine, we show the incorporation of 3-aminopropyltriethoxysilane (APTES), a traditional coupling agent capable of covalent bonding to a broad range of organic and inorganic surfaces, into polydopamine coatings. High energy X-ray photoelectron spectroscopy (HE-XPS), conventional XPS, near-edge X-ray absorption fine structure (NEXAFS), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), and ellipsometry measurements were used to investigate changes in coating chemistry and thickness, which suggest covalent incorporation of APTES into polydopamine. These coatings can be deposited either in Tris buffer or by using an aqueous APTES solution as a buffer without Tris. APTES-dopamine hydrochloride deposition from solutions with molar ratios between 0:1 and 10:1 allowed us to control the coating composition across a broad range.
RESUMO
Protective equipment in civilian and military applications requires the use of polymer materials that are both stiff and tough over a wide range of strain rates. However, typical structural materials, like tightly cross-linked epoxies, are very brittle. Recent experiments demonstrated that cross-linked poly(dicyclopentadiene) (pDCPD) networks can circumvent this trade-off by providing structural properties such as a high glass transition temperature and glassy modulus, while simultaneously exhibiting excellent toughness and high-rate impact resistance. The greater performance of pDCPD was attributed to more facile plastic deformation and nano-scale void formation, but the chemical and structural mechanisms underlying this response were not clear. Here, we use atomistic molecular dynamics to compare the molecular- and chain-level properties of pDCPD and epoxy networks undergoing high strain rate deformation. We quantify the tensile modulus and yield strength of the networks as well as the prevalence and characteristics of nanovoids that form during deformation. Networks of similar molecular weight between cross-links are compared. Two key molecular-level properties are identified - monomer flexibility and polar chemistry - that influence the behavior of the networks. Increasing monomer flexibility reduces the modulus and yield strength, while strong non-covalent interactions (e.g., hydrogen bonds) that accompany polar moieties provide higher modulus and yield strength. The lack of strong non-covalent interactions in pDCPD was found to account for its lower modulus and yield strength compared to the epoxies. We examine the molecular-level properties of nanovoids, such as shape, alignment, and local stress distribution, as well as the local chemical environment, finding that nanovoid formation and growth are increased by the monomer rigidity but decreased by polar chemistry. As a result, the pDCPD network, which has a stiff chain backbone with nonpolar alkane chemistry, exhibits more and larger nanovoids that grow more readily during deformation, which could account for the higher toughness and more ductile behavior observed in pDCPD.
RESUMO
Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single "pluripotent" feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.
RESUMO
Near edge X-ray absorption fine structure (NEXAFS) coupled with molecular dynamics simulations were utilized to probe the orientation at the exposed surface of the polymer film for polystyrene type polymers with various pendant functional groups off the phenyl ring. For all the polymers, the surface was oriented so that the rings are nominally normal to the film surface and pointing outward from the surface. The magnitude of this orientation was small and dependent on the size of the pendant functional group. Bulky functional groups hindered the surface orientation, leading to nearly unoriented surfaces. Depth dependent NEXAFS measurements demonstrated that the surface orientation was localized near the interface. Molecular dynamics simulations showed that the phenyl rings were not oriented strongly around a particular "average tilt angle". In contrast, simulations demonstrate that the phenyl rings exhibit a broad distribution of tilt angles, and that changes in the tilt angle distribution with pendant functionality give rise to the observed NEXAFS response. The more oriented samples exhibit a higher probability of phenyl ring orientation at angles greater than 60 degrees relative to the plane of the films surface.
Assuntos
Poliestirenos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Propriedades de Superfície , Espectroscopia por Absorção de Raios XRESUMO
In this work, we investigate the ability to tune the quantity of surface amine functional groups in the interfacial region of epoxy-diamine composites using NEXAFS, a technique that is extremely sensitive to surface composition. Thereby, we employ a model surface (silicon wafer with the native oxide present) and, after deposition of an epoxy functionalized silane, we immersed the wafers in various diamines, followed by reaction with a diepoxy acting as a molecular probe. These results show that the number of available surface amines depends on the diamine chosen, wherein smaller molecular weight diamines provide more reaction sites. Subsequent experiments with mixtures of diamines undergoing competitive adsorption show that the amine quantity can be tailored by choice of the diamine mixture. Further experiments of diamine treated 3-(glycidoxypropyl) trimethoxysilane layers in a reacting epoxy/diamine showed that the surface reaction site density differences observed for adsorption experiments persisted in the reacting epoxy, implying that the surface reaction rate (and by extension, the surface amine concentration) dictate interfacial cross-link density up to the point of gelation.
RESUMO
Self-assembled monolayers (SAMs) enable significant changes in the surface energy and/or specific interactions of surfaces, which are desirable for microelectromechanical systems (MEMS), superhydrophobic coatings, sensors, and other applications. However, SAMs often exhibit poor durability and rapid degradation upon mechanical, thermal, or moisture exposure. The chemical and orientational changes in SAMs due to mechanical and thermal degradation were investigated using near-edge X-ray absorption fine structure (NEXAFS) and the water contact angle. SAMs were based on unfluorinated or fluorinated linear hydrocarbons that form highly oriented and densely packed structures on silicon substrates. Complex chemical and orientational changes were observed via NEXAFS following degradation. Under heating in a dry, oxygen-rich environment, unfluorinated SAMs tended to cleave at C-C bonds on the main chain; below 250 °C, CH(3) groups were sequentially cleaved toward the surface, whereas above 250 °C, remaining hydrocarbon groups were converted to a graphitic coating dominated by CâC bonds. Under similar conditions, fluorinated SAMs began their chemical degradation at 350 °C and above, although the orientation decreased steadily from 150 to 300 °C; at and above 350 °C, the preferential removal of F occurred and the SAM was slowly converted to a graphitic layer. By contrast, under vacuum the fluorinated molecules were very thermally stable, showing good stability up to 550 °C; when degradation occurred, entire molecules were removed. Mechanical degradation followed two routes; both unfluorinated and fluorinated SAMs that were mechanically rubbed with smooth surfaces exhibited severe chemical degradation of the molecules, leading to an amorphous and poorly defined layer with CâC, C-C, C-H, and C-F bonds. Unfluorinated and fluorinated surfaces that were mechanically rubbed in the presence of free silicon particulates showed the rapid and complete destruction of both the molecular orientation and the protective SAM layer, even for short exposure periods. The resulting NEXAFS spectra were very similar to those produced by heating to 550 °C, suggesting that the friction created by granular particles may lead to extreme local heating.
RESUMO
The binding energy, density, and solubility of functionalized gold nanoparticles in a vacuum are computed using molecular dynamics simulations. Numerous parameters including surface coverage fraction, functional group (-CH(3), -OH, -NH(2)), and nanoparticle orientation are considered. The analysis includes computation of minimum interparticle binding distances and energies and an analysis of mechanisms that may contribute to changes in system potential energy. A number of interesting trends and results are observed, such as increasing binding distance with higher terminal group electronegativity and a minimum particle-particle binding energy (solubility parameter) based upon surface coverage. These results provide a fundamental understanding of ligand-coated nanoparticle interactions required for the design and processing of high-density polymer composites. The computational model and results are presented as support for these conclusions.
RESUMO
Photoresponsive molecules can be integrated into glassy materials to probe the local environment and invoke responsive changes in polymer behavior. For example, recent experiments and simulations have studied increased stability in vapor-deposited glasses by examining the photoisomerization rate of a probe molecule. At the theoretical level, past work relied on coarse-grained simulations to explain the role of photoisomerization on glass behavior. In order to effectively exploit these molecular probes, an ability to quantify how the local environment influences the photoisomerization rate is needed. In this work, we present all-atom molecular-dynamics (MD) simulations of molecular glasses of photoresponsive azobenzene (AB) molecules. The stability of these in-silico samples is probed using photoisomerization, where AB molecules can undergo trans â cis transition upon light exposure. Vapor-deposited and bulk-cooled glasses of AB are simulated using a classical dihedral-switching potential developed by Böckmann et al. (J. Phys. Chem. A 2010, 114, 745-754) to model the photoisomerization process. The MD simulations include thousands of molecules and run for tens of nanoseconds. These size and time scales allow us to explore the broad distribution of photoisomerization wait times, which yields two results. First, the wait-time distributions for both physical vapor deposition and bulk-cooled glasses depend strongly on sample and local density, showing that density or local packing is a primary factor in glass stability against photoisomerization and the experimentally measured photoresponse. Second, the distribution follows a power-law with exponent b ≈ 1.25-1.3 that extends to longer times with increasing density. The power-law distribution suggests a connection with previous experiments that related barriers to photoisomerization with an effective photoisomerization temperature.
RESUMO
Polymers formed by ring-opening metathesis polymerization (ROMP) such as poly(dicyclopentadiene) (pDCPD) exhibit a technologically desirable combination of high toughness, high glass transition temperature, and outstanding low-temperature performance. However, because of their nonpolar molecular structure, they tend to suffer from relatively low elastic moduli and poor adhesion to common fillers, fibers, and substrates, limiting their utility as adhesives and composite binders without specialized bonding agents. Here, we investigate the mechanical properties of a pDCPD-based copolymer filled with well-defined spherical microparticles having four distinct surface chemistries capable of strong, moderate, or weak bonding to the matrix with surfaces ranging from polar to nonpolar. Measurements in uniaxial tension, quasi-static fracture, and high-velocity impact are complemented by digital image correlation (DIC), scanning electron microscopy (SEM) fractography, and X-ray computed tomography (X-µCT) of subcritically loaded crack tips, yielding insight into the complex roles played by interfacial bonding in strength, stiffness, and toughening mechanisms of an already tough polymer. Analysis using quantitative fracture and impact mechanism models provided valuable guidelines for designing heterogeneous systems that combine structural and tough performance.
RESUMO
The adsorption of small oligomers on a model metal oxide surface was studied with atomistically detailed molecular dynamics simulations. The oligomers consisted of two different repeat units: a maleimide, which contains a catechol functional group as in the dopamine residue found in marine adhesive proteins, and a methyl acrylate. A hydroxylated alumina surface was used as the model metal oxide surface. Adsorption interactions were investigated in aqueous as well as anhydrous conditions. In anhydrous conditions, the model oligomers displayed strong adsorption interactions with the surface. However, in aqueous conditions, the adsorption interactions were significantly weakened because of the competition with the water molecules for adsorption sites near the surface. Catechol functional groups in the model oligomers were found to play an important role in adsorption interactions with the alumina surface via hydrogen bonds. However, diverse adsorption properties were observed depending on compositions and sequences of two different repeat units and self-aggregations, indicating that the hydrogen bonding capability of catechol groups is not the sole factor determining adsorption properties.
RESUMO
This paper describes a new witness material for quantifying the back face deformation (BFD) resulting from high rate impact of ballistic protective equipment. Accurate BFD quantification is critical for the assessment and certification of personal protective equipment, such as body armor and helmets, and ballistic evaluation. A common witness material is ballistic clay, specifically, Roma Plastilina No. 1 (RP1). RP1 must be heated to nearly 38°C to pass calibration, and used within a limited time frame to remain in calibration. RP1 also exhibits lot-to-lot variability and is sensitive to time, temperature, and handling procedures, which limits the BFD accuracy and reproducibility. A new silicone composite backing material (SCBM) was developed and tested side-by-side with heated RP1 using quasi-static indentation and compression, low velocity impact, spherical projectile penetration, and both soft and hard armor ballistic BFD measurements to compare their response over a broad range of strain rates and temperatures. The results demonstrate that SCBM mimics the heated RP1 response at room temperature and exhibits minimal temperature sensitivity. With additional optimization of the composition and processing, SCBM could be a drop-in replacement for RP1 that is used at room temperature during BFD quantification with minimal changes to the current RP1 handling protocols and infrastructure. It is anticipated that removing the heating requirement, and temperature-dependence, associated with RP1 will reduce test variability, simplify testing logistics, and enhance test range productivity.
RESUMO
The fundamental material response of a viscoelastic material when impacted by a ballistic projectile has important implication for the defense, law enforcement, and medical communities particularly for the evaluation of protective systems. In this paper, we systematically vary the modulus and toughness of a synthetic polymer gel to determine their respective influence on the velocity-dependent penetration of a spherical projectile. The polymer gels were characterized using tensile, compression, and rheological testing taking special care to address the unique challenges associated with obtaining high fidelity mechanical data on highly conformal materials. The depth of penetration data was accurately described using the elastic Froude number for viscoelastic gels ranging in Young's modulus from ~60 to 630 kPa. The minimum velocity of penetration was determined to scale with the gel toughness divided by the gel modulus, a qualitative estimate for the zone of deformation size scale upon impact. We anticipate that this work will provide insight into the critical material factors that control ballistic penetration behavior in soft materials and aid in the design and development of new ballistic testing media.
Assuntos
Módulo de Elasticidade , Teste de Materiais , Movimento (Física) , Géis , Polietilenos , Poliestirenos , Reologia , Aço , Estresse Mecânico , Temperatura , Resistência à Tração , ViscosidadeRESUMO
Angle-resolved X-ray photoelectron spectroscopy (XPS) and dynamic secondary ion mass spectroscopy (DSIMS) experiments were conducted to assess the interactions between a diamine curing agent and a glycidoxysilane-modified glass substrate. This effort was motivated by earlier work, in which a fluorescent probe localized in dilute quantities in the silane layer was used to track the penetration of the resin into the silane layer, as well as the resin cure. XPS and DSIMS experiments were performed on the silane layers immersed only in the resin hardener, providing more detailed information about the concentration profile and structural reorganization within the silane layer due specifically to hardener penetration. Dynamic SIMS spectra reveal the presence of hardener in the layer, as indicated by the strong CN- signal throughout the silane layer thickness. The XPS results indicate the presence of an amine gradient within the top 10 nm of the silane coating, with less amine penetration deeper into the silane layer. The XPS data also suggest some level of anisotropy in the molecular structure of the diamine/glycidoxysilane coating, as revealed by the differences in the relative atomic concentrations and peak positions of the C1s components at two different take-off angles.
RESUMO
A novel technique is described to investigate buried polymer/sizing/substrate interfacial regions, in situ, by localizing a fluorescent probe molecule in the sizing layer. Epoxy functional silane coupling agent multilayers were deposited on glass microscope cover slips and doped with small levels of a fluorescently labeled silane coupling agent (FLSCA). The emission of the grafted FLSCA was dependent on the silane layer thickness, showing blue-shifted emission with decreasing thickness. The fluorescent results suggest that thinner layers were more tightly bound to the glass surface. The layers were also characterized by scanning electron microscopy, contact angle, and thermogravimetric analysis (TGA). When the FLSCA-doped silane layers were immersed in epoxy resin, a blue shift in emission occurred during resin cure, indicating the potential to study interfacial chemistry, in situ. Thicker silane layers exhibited smaller fluorescence shifts during cure, suggesting incomplete resin penetration into the thickest silane layers.
Assuntos
Resinas Epóxi/química , Corantes Fluorescentes/química , Polímeros/química , Silanos/química , Compostos Benzidrílicos , Compostos de Epóxi/química , Éteres/química , Vidro/química , Temperatura Alta , Microscopia Eletrônica de Varredura , Propilenoglicóis/química , Dióxido de Silício/química , Espectrometria de Fluorescência , Espectrofotometria , Tensão SuperficialRESUMO
Solvent-swollen polymer gels can be utilized as mechanical simulants of biological tissues to evaluate protective systems and assess injury mechanisms. However, a key challenge in this application of synthetic materials is mimicking the rate-dependent mechanical response of complex biological tissues. Here, we characterize the mechanical behavior of tissue simulant gel candidates comprising a chemically crosslinked polydimethylsiloxane (PDMS) network loaded with a non-reactive PDMS solvent, and compare this response with that of tissue from murine heart and liver under comparable loading conditions. We first survey the rheological properties of a library of tissue simulant candidates to investigate the effects of solvent loading percentage, reactive functional group stoichiometry, and solvent molecular weight. We then quantify the impact resistance, energy dissipation capacities, and energy dissipation rates via impact indentation for the tissue simulant candidates, as well as for the murine heart and liver. We demonstrate that by tuning these variables the silicone gels can be engineered to match the impact response of biological tissues. These experiments inform the design principles required for synthetic polymer gels that are optimized to predict the response of specific biological tissues to impact loading, providing insight for further tuning of this gel system to match the impact response of other "soft tissues".
Assuntos
Dimetilpolisiloxanos/química , Géis/química , Coração/fisiologia , Fígado/fisiologia , Animais , Fenômenos Biomecânicos , Teste de Materiais , Ratos , Reologia , Solventes/química , Engenharia TecidualRESUMO
The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double O=C bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 +/- 2 degrees , due primarily to chemical heterogeneity. Annealing above T(g) allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.
RESUMO
Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is utilized to provide insight into surface chemical effects in model photoresist films. First, NEXAFS was used to examine the resist/air interface including surface segregation of a photoacid generator (PAG) and the extent of surface deprotection in the film. The concentration of PAG at the resist-air interface was higher than the bulk concentration, which led to a faster deprotection rate at that interface. Second, a NEXAFS depth profiling technique was utilized to probe for compositional gradients in model resist line edge regions. In the model line edge region, the surface composition profile for the developed line edge was dependent on the post exposure bake time.