Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 598(7879): 53-58, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616059

RESUMO

The quantum anomalous Hall (QAH) effect-a macroscopic manifestation of chiral band topology at zero magnetic field-has been experimentally realized only by the magnetic doping of topological insulators1-3 and the delicate design of moiré heterostructures4-8. However, the seemingly simple bilayer graphene without magnetic doping or moiré engineering has long been predicted to host competing ordered states with QAH effects9-11. Here we explore states in bilayer graphene with a conductance of 2 e2 h-1 (where e is the electronic charge and h is Planck's constant) that not only survive down to anomalously small magnetic fields and up to temperatures of five kelvin but also exhibit magnetic hysteresis. Together, the experimental signatures provide compelling evidence for orbital-magnetism-driven QAH behaviour that is tunable via electric and magnetic fields as well as carrier sign. The observed octet of QAH phases is distinct from previous observations owing to its peculiar ferrimagnetic and ferrielectric order that is characterized by quantized anomalous charge, spin, valley and spin-valley Hall behaviour9.

2.
Nano Lett ; 22(3): 973-978, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35049308

RESUMO

Electrolyte-gated organic transistors (EGOTs) are promising candidates as a new class of neuromorphic devices in hardware-based artificial neural networks that can outperform their complementary metal oxide semiconductor (CMOS) counterparts regarding processing speed and energy consumption. Several ways in which to implement such networks exist, two prominent methods of which can be implemented by nanoscopic vertical EGOTs, as we show here. First, nanoscopic vertical electrolyte-gated transistors with a donor-acceptor diketopyrrolopyrrole-terthiophene polymer as an active material can be used to reversibly switch the channel conductivity over five orders of magnitude (3.8 nS to 392 µS) and perform switching at low operation voltages down to -1 mV. Second, nanoscopic EGOTs can also mimic fundamental synaptic functions, and we show an interconnection of up to three transistors, highlighting the possibility to emulate biological nerve cells.


Assuntos
Eletrólitos , Transistores Eletrônicos , Condutividade Elétrica , Redes Neurais de Computação , Óxidos
3.
Nano Lett ; 22(18): 7378-7385, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36113049

RESUMO

Bilayer graphene (BLG) has multiple internal degrees of freedom and a constant density of states down to the charge neutrality point when trigonal warping is ignored. Consequently, it is susceptible to various competing ground states. However, a coherent experimental determination of the ground state has been challenging due to the interaction-disorder interplay. Here we present an extensive transport study in a series of dually gated freestanding BLG devices and identify the layer-antiferromagnet as the ground state with a continuous strength across all devices. This strength correlates with the width of the state in the electric field. We systematically identify electric-field disorder─spatial variations in the interlayer potential difference─as the main source responsible for the observations. Our results pinpoint for the first time the importance of electric-field disorder on spontaneous symmetry breaking in BLG and solve a long-standing debate on its ground state. The electric-field disorder should be universal to all 2D materials.

4.
Small ; 18(34): e2200605, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35905481

RESUMO

In organic electronics, local crystalline order is of critical importance for the charge transport. Grain boundaries between molecularly ordered domains are generally known to hamper or completely suppress charge transfer and detailed knowledge of the local electronic nature is critical for future minimization of such malicious defects. However, grain boundaries are typically hidden within the bulk film and consequently escape observation or investigation. Here, a minimal model system in form of monolayer-thin films with sub-nm roughness of a prototypical n-type organic semiconductor is presented. Since these films consist of large crystalline areas, the detailed energy landscape at single grain boundaries can be studied using Kelvin probe force microscopy. By controlling the charge-carrier density in the films electrostatically, the impact of the grain boundaries on charge transport in organic devices is modeled. First, two distinct types of grain boundaries are identified, namely energetic barriers and valleys, which can coexist within the same thin film. Their absolute height is found to be especially pronounced at charge-carrier densities below 1012 cm- 2 -the regime at which organic solar cells and light emitting diodes typically operate. Finally, processing conditions by which the type or energetic height of grain boundaries can be controlled are identified.

5.
Nano Lett ; 21(10): 4430-4436, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33956451

RESUMO

Miniaturization of electronic circuits increases their overall performance. So far, electronics based on organic semiconductors has not played an important role in the miniaturization race. Here, we show the fabrication of liquid electrolyte gated vertical organic field effect transistors with channel lengths down to 2.4 nm. These ultrashort channel lengths are enabled by using insulating hexagonal boron nitride with atomically precise thickness and flatness as a spacer separating the vertically aligned source and drain electrodes. The transistors reveal promising electrical characteristics with output current densities of up to 2.95 MA cm-2 at -0.4 V bias, on-off ratios of up to 106, a steep subthreshold swing of down to 65 mV dec-1 and a transconductance of up to 714 S m-1. Realizing channel lengths in the sub-5 nm regime and operation voltages down to 100 µV proves the potential of organic semiconductors for future highly integrated or low power electronics.

6.
Clin Kidney J ; 17(6): sfae097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919277

RESUMO

Background: This study investigated whether parathyroid hormone (PTH) lowering with etelcalcetide, and the consequent effects on mineral and bone metabolism, could improve serum calcification propensity (T50 time) and decrease calciprotein particle (CPP) load in hemodialysis patients with secondary hyperparathyroidism. Methods: In this single-arm, prospective, dose-escalation proof-of-principle study, hemodialysis patients received etelcalcetide at 2.5 mg/dialysis session with increments of 2.5 mg every 4 weeks to a maximum dose of 15 mg three times a week or until a pre-specified safety endpoint was reached, followed by an 8-week wash-out phase. Results: Out of 36 patients recruited (81% male, 62 ± 13 years), 16 patients completed the study per protocol with a mean maximum tolerated dose of etelcalcetide of 9.5 ± 2.9 mg/dialysis session. With escalating doses of etelcalcetide, PTH and serum calcium levels significantly decreased (P < 0.0001). While there was no significant change in T50 times or serum phosphate levels, etelcalcetide did yield significant and consistent reductions in serum levels of endogenous calciprotein monomers [-35.4 (-44.4 to -26.5)%, P < 0.0001], primary [-22.4 (-34.5 to -10.3)%, P < 0.01] and secondary CPP [-29.1 (-45.7 to -12.4)%, P < 0.01], an effect that was reversed after therapy withdrawal. Serum levels of osteoclastic markers significantly decreased with escalating doses of etelcalcetide, while levels of the osteoblastic marker remained stable. Conclusions: Lowering of PTH with etelcalcetide did not result in statistically significant changes in T50. By contrast, homogenous reductions in serum levels of calciprotein monomers, primary and secondary CPP were observed.

7.
Nat Commun ; 13(1): 4187, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858959

RESUMO

An established way of realising topologically protected states in a two-dimensional electron gas is by applying a perpendicular magnetic field thus creating quantum Hall edge channels. In electrostatically gapped bilayer graphene intriguingly, even in the absence of a magnetic field, topologically protected electronic states can emerge at naturally occurring stacking domain walls. While individually both types of topologically protected states have been investigated, their intriguing interplay remains poorly understood. Here, we focus on the interplay between topological domain wall states and quantum Hall edge transport within the eight-fold degenerate zeroth Landau level of high-quality suspended bilayer graphene. We find that the two-terminal conductance remains approximately constant for low magnetic fields throughout the distinct quantum Hall states since the conduction channels are traded between domain wall and device edges. For high magnetic fields, however, we observe evidence of transport suppression at the domain wall, which can be attributed to the emergence of spectral minigaps. This indicates that stacking domain walls potentially do not correspond to a topological domain wall in the order parameter.

8.
Nat Nanotechnol ; 14(6): 579-585, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886379

RESUMO

Until now, organic semiconductors have failed to achieve high performance in highly integrated, sub-100 nm transistors. Consequently, single-crystalline materials such as single-walled carbon nanotubes, MoS2 or inorganic semiconductors are the materials of choice at the nanoscale. Here we show, using a vertical field-effect transistor design with a channel length of only 40 nm and a footprint of 2 × 80 × 80 nm2, that high electrical performance with organic polymers can be realized when using electrolyte gating. Our organic transistors combine high on-state current densities of above 3 MA cm-2, on/off current modulation ratios of up to 108 and large transconductances of up to 5,000 S m-1. Given the high on-state currents at such large on/off ratios, our novel structures also show promise for use in artificial neural networks, where they could operate as memristive devices with sub-100 fJ energy usage.

9.
Adv Mater ; 31(16): e1808309, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30828880

RESUMO

Determining the electronic properties of nanoscopic, low-dimensional materials free of external influences is key to the discovery and understanding of new physical phenomena. An example is the suspension of graphene, which has allowed access to their intrinsic charge transport properties. Furthermore, suspending thin films enables their application as membranes, sensors, or resonators, as has been explored extensively. While the suspension of covalently bound, electronically active thin films is well established, semiconducting thin films composed of functional molecules only held together by van der Waals interactions could only be studied supported by a substrate. In the present work, it is shown that by utilizing a surface-crystallization method, electron conductive films with thicknesses of down to 6 nm and planar chiral optical activity can be freely suspended across several hundreds of nanometers. The suspended membranes exhibit a Young's modulus of 2-13 GPa and are electronically decoupled from the environment, as established by temperature-dependent field-effect transistor measurements.

10.
Math Biosci ; 234(2): 75-83, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21875602

RESUMO

A new modeling approach is presented which accounts for the unsteady motion features and dynamics characteristics of bounding flight. For this purpose, a realistic mathematical model is developed to describe the flight dynamics of a bird with regard to a motion which comprises flapping and bound phases involving acceleration and deceleration as well as, simultaneously, pull-up and push-down maneuvers. Furthermore, a mathematical optimization method is used for determining that bounding flight mode which yields the minimum energy expenditure per range. Thus, it can be shown to what extent bounding flight is aerodynamically superior to continuous flapping flight, yielding a reduction in the energy expenditure in the speed range practically above the maximum range speed. Moreover, the role of the body lift for the efficiency of bounding flight is identified and quantified. Introducing an appropriate non-dimensionalization of the relations describing the bird's flight dynamics, results of generally valid nature are derived for the addressed items.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Metabolismo Energético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA