Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2778: 31-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478269

RESUMO

Transmembrane ß-barrel proteins reside in the outer membrane of Gram-negative bacteria and are thus in direct contact with the environment. Because of that, they are involved in many key processes stretching from cellular survival to virulence. Hence, they are an attractive target for the development of novel antimicrobials, in addition to being of fundamental biological interest. To study this class of proteins, they are often required to be expressed in Escherichia coli. Recombinant expression of ß-barrel proteins can be achieved using two fundamentally different strategies. The first alternative uses a complete coding sequence that includes a signal peptide for targeting the protein to its native cellular location, the bacterial outer membrane. The second alternative omits the signal peptide in the gene, leading to mislocalization and aggregation of the protein in the bacterial cytoplasm. These aggregates, called inclusion bodies, can be solubilized and the protein can be folded into its native form in vitro. In this chapter, we present example protocols for both strategies and discuss their advantages and disadvantages.


Assuntos
Proteínas de Escherichia coli , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas/genética
2.
Methods Mol Biol ; 2778: 53-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478271

RESUMO

The SpyCatcher-SpyTag system has become a popular and versatile tool for protein ligation. It is based on a small globular protein (SpyCatcher) that binds to a 13-residue peptide (SpyTag), which subsequently leads to the formation of a covalent isopeptide bond. Thus, the reaction is essentially irreversible. Here, we describe how the SpyCatcher-SpyTag system can be used to label surface-exposed bacterial outer membrane proteins, e.g., for topology mapping or fluorescent time-course experiments. We cover using fluorescence measurements and microscopy to measure labeling efficiency using SpyCatcher fused with superfolder GFP in this chapter.


Assuntos
Proteínas de Membrana , Peptídeos , Proteínas de Membrana/genética , Peptídeos/química , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA