Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rev Physiol Biochem Pharmacol ; 185: 153-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-32789789

RESUMO

Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.


Assuntos
Sinalização do Cálcio , Neoplasias , Humanos , Sinalização do Cálcio/fisiologia , Mitocôndrias , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Morte Celular , Proteínas de Membrana/metabolismo , Cálcio/metabolismo , Neoplasias/metabolismo
2.
J Nanobiotechnology ; 21(1): 469, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062461

RESUMO

Over the past years, the development of innovative smart wound dressings is revolutionizing wound care management and research. Specifically, in the treatment of diabetic foot wounds, three-dimensional (3D) bioprinted patches may enable personalized medicine therapies. In the present work, a methacrylated hyaluronic acid (MeHA) bioink is employed to manufacture 3D printed patches to deliver small extracellular vesicles (sEVs) obtained from human mesenchymal stem cells (MSC-sEVs). The production of sEVs is maximized culturing MSCs in bioreactor. A series of in vitro analyses are carried out to demonstrate the influence of MSC-sEVs on functions of dermal fibroblasts and endothelial cells, which are the primary functional cells in skin repair process. Results demonstrate that both cell populations are able to internalize MSC-sEVs and that the exposure to sEVs stimulates proliferation and migration. In vivo experiments in a well-established diabetic mouse model of pressure ulcer confirm the regenerative properties of MSC-sEVs. The MeHA patch enhances the effectiveness of sEVs by enabling controlled release of MSC-sEVs over 7 days, which improve wound epithelialization, angiogenesis and innervation. The overall findings highlight that MSC-sEVs loading in 3D printed biomaterials represents a powerful technique, which can improve the translational potential of parental stem cell in terms of regulatory and economic impact.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Animais , Camundongos , Humanos , Ácido Hialurônico , Células Endoteliais , Úlcera , Células-Tronco , Bandagens
3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983075

RESUMO

Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have attracted growing interest as a possible novel therapeutic agent for the management of different cardiovascular diseases (CVDs). Hypoxia significantly enhances the secretion of angiogenic mediators from MSCs as well as sEVs. The iron-chelating deferoxamine mesylate (DFO) is a stabilizer of hypoxia-inducible factor 1 and consequently used as a substitute for environmental hypoxia. The improved regenerative potential of DFO-treated MSCs has been attributed to the increased release of angiogenic factors, but whether this effect is also mediated by the secreted sEVs has not yet been investigated. In this study, we treated adipose-derived stem cells (ASCs) with a nontoxic dose of DFO to harvest sEVs (DFO-sEVs). Human umbilical vein endothelial cells (HUVECs) treated with DFO-sEVs underwent mRNA sequencing and miRNA profiling of sEV cargo (HUVEC-sEVs). The transcriptomes revealed the upregulation of mitochondrial genes linked to oxidative phosphorylation. Functional enrichment analysis on miRNAs of HUVEC-sEVs showed a connection with the signaling pathways of cell proliferation and angiogenesis. In conclusion, mesenchymal cells treated with DFO release sEVs that induce in the recipient endothelial cells molecular pathways and biological processes strongly linked to proliferation and angiogenesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Células Cultivadas , Desferroxamina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Quelantes de Ferro/farmacologia , Vesículas Extracelulares/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675268

RESUMO

Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.


Assuntos
Diabetes Mellitus , Campos Eletromagnéticos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Inflamação , Anti-Inflamatórios , Biofísica
5.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293399

RESUMO

Atherosclerosis (AS), the main cause of many cardiovascular diseases (CVDs), is a progressive inflammatory disease characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. The result is the thickening and clogging of these vessel walls. Several cell types are directly involved in the pathological progression of AS. Among them, platelets represent the link between AS, inflammation, and thrombosis. Indeed, besides their pivotal role in hemostasis and thrombosis, platelets are key mediators of inflammation at injury sites, where they act by regulating the function of other blood and vascular cell types, including endothelial cells (ECs), leukocytes, and vascular smooth muscle cells (VSMCs). In recent years, increasing evidence has pointed to a central role of platelet-derived extracellular vesicles (P-EVs) in the modulation of AS pathogenesis. However, while the role of platelet-derived microparticles (P-MPs) has been significantly investigated in recent years, the same cannot be said for platelet-derived exosomes (P-EXOs). For this reason, this reviews aims at summarizing the isolation methods and biological characteristics of P-EXOs, and at discussing their involvement in intercellular communication in the pathogenesis of AS. Evidence showing how P-EXOs and their cargo can be used as biomarkers for AS is also presented in this review.


Assuntos
Aterosclerose , Micropartículas Derivadas de Células , Exossomos , Trombose , Humanos , Exossomos/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/metabolismo , Inflamação/metabolismo , Trombose/metabolismo , Biomarcadores/metabolismo , Mediadores da Inflamação/metabolismo , Lipídeos
6.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408912

RESUMO

Early post-transplant is the critical phase for the success of hematopoietic stem cell transplantation (HSCT). New viral infections and the reactivations associated with complete ablation of the recipient's T-cell immunity and inefficient reconstitution of the donor-derived system represent the main risks of HSCT. To date, the pharmacological treatments for post-HSCT viral infection-related complications have many limitations. Adoptive cell therapy (ACT) represents a new pharmacological strategy, allowing us to reconstitute the immune response to infectious agents in the post-HSC period. To demonstrate the potential advantage of this novel immunotherapy strategy, we report three cases of pediatric patients and the respective central nervous system complications after donor lymphocyte infusion.


Assuntos
Doenças Transmissíveis , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Viroses , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Criança , Doenças Transmissíveis/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunoterapia/efeitos adversos , Imunoterapia Adotiva/efeitos adversos , Linfócitos , Neoplasias/etiologia , Viroses/etiologia , Viroses/terapia
7.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557882

RESUMO

Hybrid bone substitute made up of a 3D printed polyetheretherketone (PEEK) scaffold coated with methacrylated hyaluronic acid (MeHA)-hydroxyapatite (HAp) hydrogel is the objective of the present work. Development and characterization of the scaffold and of the MeHA-HAp after its infiltration and UV photocrosslinking have been followed by analyses of its biological properties using human mesenchymal stem cells (MSCs). Interconnected porous PEEK matrices were produced by fused deposition modeling (FDM) characterized by a reticular pattern with 0°/90° raster orientation and square pores. In parallel, a MeHA-HAp slurry has been synthesized and infiltrated in the PEEK scaffolds. The mechanical properties of the coated and pure PEEK scaffold have been evaluated, showing that the inclusion of MeHA-HAp into the lattice geometry did not significantly change the strength of the PEEK structure with Young's modulus of 1034.9 ± 126.1 MPa and 1020.0 ± 63.7 MPa for PEEK and PEEK-MeHA-HAp scaffolds, respectively. Human MSCs were seeded on bare and coated scaffolds and cultured for up to 28 days to determine the adhesion, proliferation, migration and osteogenic differentiation. In vitro results showed that the MeHA-HAp coating promotes MSCs adhesion and proliferation and contributes to osteogenic differentiation and extracellular matrix mineralization. This study provides an efficient solution for the development of a scaffold combining the great mechanical performances of PEEK with the bioactive properties of MeHA and HAp, having high potential for translational clinical applications.


Assuntos
Ácido Hialurônico , Osteogênese , Humanos , Ácido Hialurônico/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Regeneração Óssea , Cetonas/farmacologia , Cetonas/química , Durapatita/farmacologia , Durapatita/química , Impressão Tridimensional , Alicerces Teciduais/química
8.
Mol Genet Metab ; 124(3): 210-215, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29895405

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive metabolic disorder of GABA catabolism. SSADH is a mitochondrial homotetrameric enzyme encoded by ALDH5A1 gene. We report the molecular characterization of ALDH5A1 gene in an Italian SSADHD patient, showing heterozygosity for four missense mutations: c.526G>A (p.G176R), c.538C>T (p.H180Y), c.709G>T (p.A237S) and c.1267A>T (p.T423S), the latter never described so far. The patient inherited c.526A in cis with c.538T from the mother and c.709T in cis with c.1267T from the father. To explore the effects of the two allelic arrangements on SSADH activity and protein level, wild type, single or double mutated cDNA constructs were expressed in a cell system. The p.G176R change, alone or in combination with p.H180Y, causes the abolishment of enzyme activity. Western blot analysis showed a strongly reduced amount of the p.176R-p.180Y double mutant protein, suggesting increased degradation. Indeed, in silico analyses confirmed high instability of this mutant homotetramer. Enzyme activity relative to the other p.423S-p.237S double mutant is around 30% of wt. Further in silico analyses on all the possible combinations of mutant monomers suggest the lowest stability for the tetramer constituted by p.176R-p.180Y monomers and the highest stability for that constituted by p.237S-p.423S monomers. The present study shows that when a common SNP, associated with a slight reduction of SSADH activity, is inherited in cis with a mutation showing no consequences on the enzyme function, the activity is strongly affected. In conclusion, the peculiar arrangement of four missense mutations occurring in this patient is responsible for the SSADHD phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/patologia , Deficiências do Desenvolvimento/patologia , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Succinato-Semialdeído Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Pré-Escolar , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Estabilidade Enzimática , Feminino , Heterozigoto , Humanos , Masculino , Linhagem , Conformação Proteica , Succinato-Semialdeído Desidrogenase/química , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
9.
Metab Brain Dis ; 32(5): 1383-1388, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28664505

RESUMO

SSADH deficiency (SSADHD) is a rare autosomal recessively inherited metabolic disorder. It is associated with mutations of ALDH5A1 gene, coding for the homotetrameric enzyme SSADH. This enzyme is involved in γ-aminobutyric acid (GABA) catabolism, since it oxidizes succinic semialdehyde (SSA) to succinate. Mutations in ALDH5A1 gene result in the abnormal accumulation of γ-hydroxybutyrate (GHB), which is pathognomonic of SSADHD. In the present report, diagnosis of SSADHD in a three-month-old female was achieved by detection of high levels of GHB in urine. Sequence analysis of ALDH5A1 gene showed that the patient was a compound heterozygote for c.1226G > A (p.G409D) and the novel missense mutation, c.1498G > C (p.V500 L). By ALDH5A1 gene expression in transiently transfected HEK293 cells and enzyme activity assays, we demonstrate that the p.V500 L mutation, despite being conservative, produces complete loss of enzyme activity. In silico protein modelling analysis and evaluation of tetramer destabilizing energies suggest that structural impairment and partial occlusion of the access channel to the active site affect enzyme activity. These findings add further knowledge on the missense mutations associated with SSADHD and the molecular mechanisms underlying the loss of the enzyme activity.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento/genética , Succinato-Semialdeído Desidrogenase/deficiência , Ácido gama-Aminobutírico/análogos & derivados , Sítios de Ligação , Simulação por Computador , DNA/genética , Feminino , Células HEK293 , Heterozigoto , Humanos , Lactente , Modelos Moleculares , Mutação/genética , Mutação de Sentido Incorreto , Linhagem , Oxibato de Sódio/urina , Succinato-Semialdeído Desidrogenase/genética , Ácido gama-Aminobutírico/metabolismo
10.
Nucleic Acids Res ; 41(5): 3201-16, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376935

RESUMO

Little is known regarding the post-transcriptional networks that control gene expression in eukaryotes. Additionally, we still need to understand how these networks evolve, and the relative role played in them by their sequence-dependent regulatory factors, non-coding RNAs (ncRNAs) and RNA-binding proteins (RBPs). Here, we used an approach that relied on both phylogenetic sequence sharing and conservation in the whole mapped 3'-untranslated regions (3'-UTRs) of vertebrate species to gain knowledge on core post-transcriptional networks. The identified human hyper conserved elements (HCEs) were predicted to be preferred binding sites for RBPs and not for ncRNAs, namely microRNAs and long ncRNAs. We found that the HCE map identified a well-known network that post-transcriptionally regulates histone mRNAs. We were then able to discover and experimentally confirm a translational network composed of RNA Recognition Motif (RRM)-type RBP mRNAs that are positively controlled by HuR, another RRM-type RBP. HuR shows a preference for these RBP mRNAs bound in stem-loop motifs, confirming its role as a 'regulator of regulators'. Analysis of the transcriptome-wide HCE distribution revealed a profile of prevalently small clusters separated by unconserved intercluster RNA stretches, which predicts the formation of discrete small ribonucleoprotein complexes in the 3'-UTRs.


Assuntos
Regiões 3' não Traduzidas , Proteínas ELAV/fisiologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Histonas/genética , Humanos , Sequências Repetidas Invertidas , Células MCF-7 , Biossíntese de Proteínas , Alinhamento de Sequência , Vertebrados
11.
Biomedicines ; 11(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371748

RESUMO

Obesity and insulin resistance are associated with the inflamed and defective adipose tissue (AT) phenotype, and are established risk factors for cardiovascular diseases (CVDs). Extracellular vesicles (EVs) are a heterogeneous group of cell-derived lipid membrane vesicles involved in the onset and development of many pathologies, including insulin resistance, diabetes, and CVDs. The inflammation associated with overweight and obesity triggers the transition of the AT secretome from healthy to pathological, with a consequent increased expression of pro-inflammatory mediators. Epicardial adipose tissue (EAT) is a specialized fat depot that surrounds the heart, in direct contact with the myocardium. Recently, the role of EAT in regulating the physiopathology of many heart diseases has been increasingly explored. In particular, the EAT phenotype and derived EVs have been associated with the onset and exacerbation of CVDs. In this review, we will focus on the role of the AT secretome in the case of CVDs, and will discuss the beneficial effects of EVs released by AT as promising therapeutic candidates.

12.
Nat Commun ; 14(1): 132, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627352

RESUMO

As an inherited disorder characterized by severe pulmonary disease, cystic fibrosis could be considered a comorbidity for coronavirus disease 2019. Instead, current clinical evidence seems to be heading in the opposite direction. To clarify whether host factors expressed by the Cystic Fibrosis epithelia may influence coronavirus disease 2019 progression, here we describe the expression of SARS-CoV-2 receptors in primary airway epithelial cells. We show that angiotensin converting enzyme 2 (ACE2) expression and localization are regulated by Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Consistently, our results indicate that dysfunctional CFTR channels alter susceptibility to SARS-CoV-2 infection, resulting in reduced viral entry and replication in Cystic Fibrosis cells. Depending on the pattern of ACE2 expression, the SARS-CoV-2 spike (S) protein induced high levels of Interleukin 6 in healthy donor-derived primary airway epithelial cells, but a very weak response in primary Cystic Fibrosis cells. Collectively, these data support that Cystic Fibrosis condition may be at least partially protecting from SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Fibrose Cística , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação para Baixo , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Replicação Viral
13.
J Allergy Clin Immunol Glob ; 2(2): 100094, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37780798

RESUMO

Background: An understanding of how patient characteristics such as age, baseline peanut-specific IgE, and atopic comorbidities may influence potential safety outcomes during peanut oral immunotherapy (P-OIT) could aid in shared decision making between clinicians and patient families. Objective: This study explored the relationship between baseline patient characteristics and reactions during P-OIT using a large sample size to better understand potential risk factors influencing P-OIT safety. Methods: Data were obtained from the Food Allergy Immunotherapy (FAIT) registry, which collects real-world OIT data from community and academic allergy clinics across Canada. Multivariable logistic regression modeling was performed to examine the relationship between baseline patient characteristics and reactions during P-OIT. Multiple imputation was applied to reduce potential bias caused by missingness and to maximize the use of available information to preserve statistical power. Results: Between April 2017 and June 2021, a total of 653 eligible patients initiated P-OIT. Multivariable regression analysis showed pre-OIT grade 2+ initial reaction (odds ratio [OR] = 1.33, 95% confidence interval [CI] 1.10, 1.61), allergic rhinitis (OR = 1.60, 95% CI 1.08, 2.38), older age (OR = 1.01, 95% CI 1.00, 1.02), and higher baseline peanut-specific IgE (OR = 1.02, 95% CI 1.02, 1.03) were associated with grade 2+ reaction during P-OIT after adjusting for potential risk factors. Conclusion: Our study identified several clinically important risk factors for grade 2+ reactions during P-OIT: pre-OIT grade 2+ initial reaction, allergic rhinitis, older age, and higher baseline peanut-specific IgE. These results highlight the need for individualized risk stratification for OIT.

14.
J Clin Immunol ; 32(6): 1404-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22843217
15.
Allergy Asthma Clin Immunol ; 8: 3, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22436326

RESUMO

BACKGROUND: The timing of complementary food introduction is controversial. Providing information on the timing of dietary introduction is crucial to the primary prevention of food allergy. The American Academy of Pediatrics offers dietary recommendations that were updated in 2008. OBJECTIVE: Identify the recommendations that general pediatricians and registered dietitians provide to parents and delineate any differences in counselling. METHODS: A 9-item survey was distributed to pediatricians and dietitians online and by mail. Information on practitioner type, gender, length of practice and specific recommendations regarding complementary food introduction and exposure was collected. RESULTS: 181 surveys were returned with a 54% response rate from pediatricians. It was not possible to calculate a meaningful dietitian response rate due to overlapping email databases. 52.5% of all respondents were pediatricians and 45.9% were dietitians. The majority of pediatricians and dietitians advise mothers that peanut abstinence during pregnancy and lactation is unnecessary. Dietitians were more likely to counsel mothers to breastfeed their infants to prevent development of atopic dermatitis than pediatricians. Hydrolyzed formulas for infants at risk of developing allergy were the top choice of formula amongst both practitioners. For food allergy prevention, pediatricians were more likely to recommend delayed introduction of peanut and egg, while most dietitians recommended no delay in allergenic food introduction. CONCLUSIONS: In the prophylaxis of food allergy, pediatricians are less aware than dietitians of the current recommendation that there is no benefit in delaying allergenic food introduction beyond 4 to 6 months. More dietitians than pediatricians believe that breastfeeding decreases the risk of atopic dermatitis. Practitioners may benefit from increased awareness of current guidelines.

16.
J Invest Dermatol ; 142(2): 355-363.e7, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34363826

RESUMO

The need to rapidly spread information about the risk of COVID-19 in patients with psoriasis and psoriatic arthritis on biologics may have hampered the methodological rigor in published literature. We analyzed the quality of papers dealing with the risk and outcomes of COVID-19 in patients with psoriasis and psoriatic arthritis receiving biologic therapies. The Newcastle-Ottawa Scale was used to estimate the quality of the published studies. Moreover, to better contextualize results, specific internal and external validity items were further considered, that is, case definition, modality of COVID-19 assessment, evidence for self-selection of participants, percentage of dropout/nonparticipants, and sample size calculation. A total of 25 of 141 papers were selected. The median Newcastle-Ottawa Scale score was 47% for psoriasis and 44% for psoriatic arthritis, indicating an overall high risk of bias. A total of 37% of psoriasis and 44% of psoriatic arthritis studies included patients with suspected COVID-19 without a positive swab. No studies provided a formal sample size calculation. A significant risk of bias in all the published papers was found. Major issues to be considered in future studies are reduction of ascertainment bias, better consideration of nonresponse or participation bias, and provision of formal statistical power calculation.


Assuntos
Artrite Psoriásica/complicações , COVID-19/etiologia , Psoríase/complicações , SARS-CoV-2 , Humanos , Avaliação de Resultados em Cuidados de Saúde , Risco
17.
Neural Regen Res ; 17(12): 2563-2575, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35662183

RESUMO

Neuronal disorders are associated with a profound loss of mitochondrial functions caused by various stress conditions, such as oxidative and metabolic stress, protein folding or import defects, and mitochondrial DNA alteration. Cells engage in different coordinated responses to safeguard mitochondrial homeostasis. In this review, we will explore the contribution of mitochondrial stress responses that are activated by the organelle to perceive these dangerous conditions, keep them under control and rescue the physiological condition of nervous cells. In the sections to come, particular attention will be dedicated to analyzing how compensatory mitochondrial hyperfusion, mitophagy, mitochondrial unfolding protein response, and apoptosis impact human neuronal diseases. Finally, we will discuss the relevance of the new concept: the "mito-inflammation", a mitochondria-mediated inflammatory response that is recently found to cover a relevant role in the pathogenesis of diverse inflammatory-related diseases, including neuronal disorders.

18.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289611

RESUMO

Aortic valve stenosis has become the most common valvular disease in elderly patients. Several treatments are available such as surgical aortic valve replacement and transcatheter aortic valve implantation. To date, however, there is a need to discover alternative treatments that can delay the disease progression and, therefore, the implant of a prosthetic valve. In this regard, a decalcification procedure based on the use of ultrasonic waves could represent an innovative solution in transcatheter cardiovascular therapies. In this article, we describe an innovative transcatheter debridement device (TDD) that uses low-intensity ultrasound shock waves for calcium ablation from the native aortic valve and bioprosthetic valve. Mesenchymal stem cells were seeded onto pericardium-based scaffolds and committed into an osteogenic phenotype. After treatment with TDD, cell proliferation was analyzed, as well as lactate dehydrogenase release and cell morphology. The release of calcium and inflammation events were detected. The results confirmed that the TDD was able to induce a safe decalcification without any adverse inflammatory events.

19.
Proc Natl Acad Sci U S A ; 105(4): 1226-31, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18212116

RESUMO

Regeneration of mesenchymal tissues depends on a resident stem cell population, that in most cases remains elusive in terms of cellular identity and differentiation signals. We here show that primary cell cultures derived from adipose tissue or skeletal muscle differentiate into adipocytes when cultured in high glucose. High glucose induces ROS production and PKCbeta activation. These two events appear crucial steps in this differentiation process that can be directly induced by oxidizing agents and inhibited by PKCbeta siRNA silencing. The differentiated adipocytes, when implanted in vivo, form viable and vascularized adipose tissue. Overall, the data highlight a previously uncharacterized differentiation route triggered by high glucose that drives not only resident stem cells of the adipose tissue but also uncommitted precursors present in muscle cells to form adipose depots. This process may represent a feed-forward cycle between the regional increase in adiposity and insulin resistance that plays a key role in the pathogenesis of diabetes mellitus.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Glucose/farmacologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adipócitos/transplante , Adipócitos/ultraestrutura , Adipogenia/fisiologia , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/citologia , Tecido Adiposo/ultraestrutura , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Glucose/metabolismo , Humanos , Músculo Esquelético/ultraestrutura , Ratos , Ratos Nus , Células-Tronco/ultraestrutura
20.
Biomedicines ; 9(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672477

RESUMO

A decline in mitochondrial redox homeostasis has been associated with the development of a wide range of inflammatory-related diseases. Continue discoveries demonstrate that mitochondria are pivotal elements to trigger inflammation and stimulate innate immune signaling cascades to intensify the inflammatory response at front of different stimuli. Here, we review the evidence that an exacerbation in the levels of mitochondrial-derived reactive oxygen species (ROS) contribute to mito-inflammation, a new concept that identifies the compartmentalization of the inflammatory process, in which the mitochondrion acts as central regulator, checkpoint, and arbitrator. In particular, we discuss how ROS contribute to specific aspects of mito-inflammation in different inflammatory-related diseases, such as neurodegenerative disorders, cancer, pulmonary diseases, diabetes, and cardiovascular diseases. Taken together, these observations indicate that mitochondrial ROS influence and regulate a number of key aspects of mito-inflammation and that strategies directed to reduce or neutralize mitochondrial ROS levels might have broad beneficial effects on inflammatory-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA