Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 19(10-11): 629-645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35994755

RESUMO

The particle filtration efficiency (PFE) of a respirator or face mask is one of its key properties. While the physics of particle filtration results in the PFE being size-dependent, measurement standards are specified using a single, integrated PFE, for simplicity. This integrated PFE is commonly defined concerning either the number (NPFE) or mass (MPFE) distribution of particles as a function of size. This relationship is non-trivial; it is influenced by both the shape of the particle distribution and the fact that multiple practical definitions of particle size are used. This manuscript discusses the relationship between NPFE and MPFE in detail, providing a guide to practitioners. Our discussion begins with a description of the theory underlying different variants of PFE. We then present experimental results for a database of size-resolved PFE (SPFE) measurements for several thousand candidate respirators and filter media, including filter media with systematically varied properties and commercial samples that span 20%-99.8% MPFE. The observed relationships between NPFE and MPFE are discussed in terms of the most-penetrating particle size (MPPS) and charge state of the media. For the sodium chloride particles used here, we observed that the MPFE was greater than NPFE for charged materials and vice versa for uncharged materials. This relationship is observed because a shift from NPFE to MPFE weights the distribution toward larger sizes, while charged materials shift the MPPS to smaller sizes. Results are validated by comparing the output of a pair of automated filter testers, which are used in gauging standards compliance, to that of MPFE computed from a system capable of measuring SPFE over the 20 nm-500 nm range.

2.
Opt Express ; 23(15): 19771-6, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367634

RESUMO

We demonstrate phase locking of a 729 nm diode laser to a 1542 nm master laser via an erbium-doped-fiber frequency comb, using a transfer-oscillator feedforward scheme which suppresses the effect of comb noise in an unprecedented 1.8 MHz bandwidth. We illustrate its performance by carrying out coherent manipulations of a trapped calcium ion with 99 % fidelity even at few-µs timescales. We thus demonstrate that transfer-oscillator locking can provide sufficient phase stability for high-fidelity quantum logic manipulation even without pre-stabilization of the slave diode laser.

3.
Phys Rev Lett ; 109(23): 233005, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368194

RESUMO

We report one-dimensional pinning of a single ion by an optical lattice. A standing-wave cavity produces the lattice potential along the rf-field-free axis of a linear Paul trap. The ion's localization is detected by measuring its fluorescence when excited by standing-wave fields with the same period, but different spatial phases. The experiments agree with an analytical model of the localization process, which we test against numerical simulations. For the best localization achieved, the ion's average coupling to the cavity field is enhanced from 50% to 81(3)% of its maximum possible value, and we infer that the ion is bound in a lattice well with over 97% probability.

4.
Phys Rev Lett ; 109(13): 133603, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23030090

RESUMO

We demonstrate single-atom resolution, as well as detection sensitivity more than 20 dB below the quantum projection noise limit, for hyperfine-state-selective measurements on mesoscopic ensembles containing 100 or more atoms. The measurement detects the atom-induced shift of the resonance frequency of an optical cavity containing the ensemble. While spatially varying coupling of atoms to the cavity prevents the direct observation of a quantized signal, the demonstrated measurement resolution provides the readout capability necessary for atomic interferometry substantially below the standard quantum limit and down to the Heisenberg limit.

5.
Phys Rev Lett ; 107(14): 143005, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107191

RESUMO

We demonstrate cavity sideband cooling of a single collective motional mode of an atomic ensemble down to a mean phonon occupation number ⟨n⟩(min⁡)=2.0(-0.3)(+0.9). Both ⟨n⟩(min) and the observed cooling rate are in good agreement with an optomechanical model. The cooling rate constant is proportional to the total photon scattering rate by the ensemble, demonstrating the cooperative character of the light-emission-induced cooling process. We deduce fundamental limits to cavity cooling either the collective mode or, sympathetically, the single-atom degrees of freedom.

6.
Sci Rep ; 11(1): 21979, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753968

RESUMO

Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles. However, they are tested for certification using a variety of standardized test methods, creating challenges for the comparison of differently certified products. We have performed systematic experiments to quantify and understand the differences between standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). Our experiments demonstrate the role of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. The measured filtration efficiency was most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299/F2100 method have commonly used non-neutralized (highly charged) aerosols as well as smaller face velocities, each of which may result in approximately 10% higher measured filtration efficiencies. In the NIOSH method, environmental conditioning at elevated humidity increased filtration efficiency in some commercial samples while decreasing it in others, indicating that measurement should be performed both with and without conditioning. More generally, our results provide an experimental basis for the comparison of respirators certified under various international methods, including FFP2, KN95, P2, Korea 1st Class, and DS2.


Assuntos
COVID-19 , Desenho de Equipamento , Filtração
7.
Phys Rev Lett ; 104(25): 250801, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867356

RESUMO

We study experimentally the application of a class of entangled states, squeezed spin states, to the improvement of atomic-clock precision. In the presence of anisotropic noise, the entanglement lifetime is strongly dependent on squeezing orientation. We measure the Allan deviation spectrum of a clock operated with a phase-squeezed input state. For averaging times up to 50 s the squeezed clock achieves a given precision 2.8(3) times faster than a clock operating at the standard quantum limit.

8.
Phys Rev Lett ; 104(7): 073602, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366881

RESUMO

We squeeze unconditionally the collective spin of a dilute ensemble of laser-cooled 87Rb atoms using their interaction with a driven optical resonator. The shape and size of the resulting spin uncertainty region are well described by a simple analytical model [M. H. Schleier-Smith, I. D. Leroux, and V. Vuletic, arXiv:0911.3936 [Phys. Rev. A (to be published)]] through 2 orders of magnitude in the effective interaction strength, without free parameters. We deterministically generate states with up to 5.6(6) dB of metrologically relevant spin squeezing on the canonical 87Rb hyperfine clock transition.

9.
Phys Rev Lett ; 104(7): 073604, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366883

RESUMO

We generate entangled states of an ensemble of 5x10{4} 87Rb atoms by optical quantum nondemolition measurement. The resonator-enhanced measurement leaves the atomic ensemble, prepared in a superposition of hyperfine clock levels, in a squeezed spin state. By comparing the resulting reduction of quantum projection noise [up to 8.8(8) dB] with the concomitant reduction of coherence, we demonstrate a clock input state with spectroscopic sensitivity 3.0(8) dB beyond the standard quantum limit.

11.
Nat Commun ; 5: 3096, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24477261

RESUMO

Precision spectroscopy of atomic and molecular ions offers a window to new physics, but is typically limited to species with a cycling transition for laser cooling and detection. Quantum logic spectroscopy has overcome this limitation for species with long-lived excited states. Here we extend quantum logic spectroscopy to fast, dipole-allowed transitions and apply it to perform an absolute frequency measurement. We detect the absorption of photons by the spectroscopically investigated ion through the photon recoil imparted on a co-trapped ion of a different species, on which we can perform efficient quantum logic detection techniques. This amplifies the recoil signal from a few absorbed photons to thousands of fluorescence photons. We resolve the line centre of a dipole-allowed transition in (40)Ca(+) to 1/300 of its observed linewidth, rendering this measurement one of the most accurate of a broad transition. The simplicity and versatility of this approach enables spectroscopy of many previously inaccessible species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA