Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 170(6): 1197-1208.e12, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886386

RESUMO

Regulation is central to the functional versatility of cytoplasmic dynein, a motor involved in intracellular transport, cell division, and neurodevelopment. Previous work established that Lis1, a conserved regulator of dynein, binds to its motor domain and induces a tight microtubule-binding state in dynein. The work we present here-a combination of biochemistry, single-molecule assays, and cryoelectron microscopy-led to the surprising discovery that Lis1 has two opposing modes of regulating dynein, being capable of inducing both low and high affinity for the microtubule. We show that these opposing modes depend on the stoichiometry of Lis1 binding to dynein and that this stoichiometry is regulated by the nucleotide state of dynein's AAA3 domain. The low-affinity state requires Lis1 to also bind to dynein at a novel conserved site, mutation of which disrupts Lis1's function in vivo. We propose a new model for the regulation of dynein by Lis1.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Dineínas/química , Humanos , Proteínas Associadas aos Microtúbulos/química , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência
2.
Annu Rev Cell Dev Biol ; 31: 83-108, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26436706

RESUMO

Until recently, dynein was the least understood of the cytoskeletal motors. However, a wealth of new structural, mechanistic, and cell biological data is shedding light on how this complicated minus-end-directed, microtubule-based motor works. Cytoplasmic dynein-1 performs a wide array of functions in most eukaryotes, both in interphase, in which it transports organelles, proteins, mRNAs, and viruses, and in mitosis and meiosis. Mutations in dynein or its regulators are linked to neurodevelopmental and neurodegenerative diseases. Here, we begin by providing a synthesis of recent data to describe the current model of dynein's mechanochemical cycle. Next, we discuss regulators of dynein, with particular focus on those that directly interact with the motor to modulate its recruitment to microtubules, initiate cargo transport, or activate minus-end-directed motility.


Assuntos
Dineínas do Citoplasma/metabolismo , Animais , Transporte Biológico/fisiologia , Humanos , Meiose/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Organelas/metabolismo , Organelas/fisiologia
3.
Cell ; 154(6): 1220-31, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034246

RESUMO

The ATP-dependent chromatin-remodeling complex SWR1 exchanges a variant histone H2A.Z/H2B dimer for a canonical H2A/H2B dimer at nucleosomes flanking histone-depleted regions, such as promoters. This localization of H2A.Z is conserved throughout eukaryotes. SWR1 is a 1 megadalton complex containing 14 different polypeptides, including the AAA+ ATPases Rvb1 and Rvb2. Using electron microscopy, we obtained the three-dimensional structure of SWR1 and mapped its major functional components. Our data show that SWR1 contains a single heterohexameric Rvb1/Rvb2 ring that, together with the catalytic subunit Swr1, brackets two independently assembled multisubunit modules. We also show that SWR1 undergoes a large conformational change upon engaging a limited region of the nucleosome core particle. Our work suggests an important structural role for the Rvbs and a distinct substrate-handling mode by SWR1, thereby providing a structural framework for understanding the complex dimer-exchange reaction.


Assuntos
Adenosina Trifosfatases/química , Montagem e Desmontagem da Cromatina , DNA Helicases/química , Complexos Multiproteicos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Dimerização , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/metabolismo
4.
Cell ; 150(5): 975-86, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22939623

RESUMO

The lissencephaly protein Lis1 has been reported to regulate the mechanical behavior of cytoplasmic dynein, the primary minus-end-directed microtubule motor. However, the regulatory mechanism remains poorly understood. Here, we address this issue using purified proteins from Saccharomyces cerevisiae and a combination of techniques, including single-molecule imaging and single-particle electron microscopy. We show that rather than binding to the main ATPase site within dynein's AAA+ ring or its microtubule-binding stalk directly, Lis1 engages the interface between these elements. Lis1 causes individual dynein motors to remain attached to microtubules for extended periods, even during cycles of ATP hydrolysis that would canonically induce detachment. Thus, Lis1 operates like a "clutch" that prevents dynein's ATPase domain from transmitting a detachment signal to its track-binding domain. We discuss how these findings provide a conserved mechanism for dynein functions in living cells that require prolonged microtubule attachments.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/química , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Sequência de Aminoácidos , Animais , Dineínas/química , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(3): e2314245121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194460

RESUMO

Transcription-coupled nucleotide excision repair (TC-NER) is a highly conserved DNA repair pathway that removes bulky lesions in the transcribed genome. Cockayne syndrome B protein (CSB), or its yeast ortholog Rad26, has been known for decades to play important roles in the lesion-recognition steps of TC-NER. Another conserved protein ELOF1, or its yeast ortholog Elf1, was recently identified as a core transcription-coupled repair factor. How Rad26 distinguishes between RNA polymerase II (Pol II) stalled at a DNA lesion or other obstacles and what role Elf1 plays in this process remains unknown. Here, we present cryo-EM structures of Pol II-Rad26 complexes stalled at different obstacles that show that Rad26 uses a common mechanism to recognize a stalled Pol II, with additional interactions when Pol II is arrested at a lesion. A cryo-EM structure of lesion-arrested Pol II-Rad26 bound to Elf1 revealed that Elf1 induces further interactions between Rad26 and a lesion-arrested Pol II. Biochemical and genetic data support the importance of the interplay between Elf1 and Rad26 in TC-NER initiation. Together, our results provide important mechanistic insights into how two conserved transcription-coupled repair factors, Rad26/CSB and Elf1/ELOF1, work together at the initial lesion recognition steps of transcription-coupled repair.


Assuntos
Reparo por Excisão , Parada Cardíaca , Humanos , Cognição , Dano ao DNA , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética
6.
J Biol Chem ; 300(7): 107469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876305

RESUMO

Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.


Assuntos
Repetição de Anquirina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas rab de Ligação ao GTP , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Células HEK293 , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Fosforilação , Microscopia Crioeletrônica , Ligação Proteica
7.
Nat Chem Biol ; 17(10): 1101-1110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34385683

RESUMO

Cyanophycin is a natural biopolymer produced by a wide range of bacteria, consisting of a chain of poly-L-Asp residues with L-Arg residues attached to the ß-carboxylate sidechains by isopeptide bonds. Cyanophycin is synthesized from ATP, aspartic acid and arginine by a homooligomeric enzyme called cyanophycin synthetase (CphA1). CphA1 has domains that are homologous to glutathione synthetases and muramyl ligases, but no other structural information has been available. Here, we present cryo-electron microscopy and X-ray crystallography structures of cyanophycin synthetases from three different bacteria, including cocomplex structures of CphA1 with ATP and cyanophycin polymer analogs at 2.6 Å resolution. These structures reveal two distinct tetrameric architectures, show the configuration of active sites and polymer-binding regions, indicate dynamic conformational changes and afford insight into catalytic mechanism. Accompanying biochemical interrogation of substrate binding sites, catalytic centers and oligomerization interfaces combine with the structures to provide a holistic understanding of cyanophycin biosynthesis.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Peptídeo Sintases/genética , Conformação Proteica
8.
Nature ; 551(7682): 653-657, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29168508

RESUMO

Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Microscopia Crioeletrônica , Reparo do DNA , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Transcrição Gênica , Adenosina Trifosfatases/química , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Domínios Proteicos , RNA Polimerase II/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Elongação da Transcrição Genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(41): 25486-25493, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989164

RESUMO

While loss-of-function mutations in Cockayne syndrome group B protein (CSB) cause neurological diseases, this unique member of the SWI2/SNF2 family of chromatin remodelers has been broadly implicated in transcription elongation and transcription-coupled DNA damage repair, yet its mechanism remains largely elusive. Here, we use a reconstituted in vitro transcription system with purified polymerase II (Pol II) and Rad26, a yeast ortholog of CSB, to study the role of CSB in transcription elongation through nucleosome barriers. We show that CSB forms a stable complex with Pol II and acts as an ATP-dependent processivity factor that helps Pol II across a nucleosome barrier. This noncanonical mechanism is distinct from the canonical modes of chromatin remodelers that directly engage and remodel nucleosomes or transcription elongation factors that facilitate Pol II nucleosome bypass without hydrolyzing ATP. We propose a model where CSB facilitates gene expression by helping Pol II bypass chromatin obstacles while maintaining their structures.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Polimerase II/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , DNA Fúngico , Escherichia coli , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/genética , Conformação Proteica , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
10.
Mov Disord ; 36(11): 2494-2504, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34423856

RESUMO

Mutations in leucine rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinson's disease (PD) and a risk factor for its sporadic form. LRRK2 hyperactivity has also been reported in sporadic PD, making LRRK2 an appealing target for PD small-molecule therapeutics. At a cellular level, increasing evidence suggests that LRRK2 regulates membrane trafficking. Under some conditions LRRK2 also associates with microtubules, the cellular tracks used by dynein and kinesin motors to move membranes. At a structural level, however, relatively little was known about LRRK2. An important step toward bridging this gap took place last year with the publication of structures of LRRK2's cytosolic and microtubule-bound forms. Here, we review the main findings from these studies and discuss what we see as the major challenges going forward with a focus on areas that will require structural information. We also introduce the structural techniques-cryo-electron microscopy and cryo-electron tomography-that were instrumental to solving the structures of LRRK2. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Biologia , Microscopia Crioeletrônica , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Microtúbulos/química , Mutação , Doença de Parkinson/genética
11.
J Struct Biol ; 207(3): 270-278, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31200019

RESUMO

Despite significant advances in all aspects of single particle cryo-electron microscopy (cryo-EM), specimen preparation still remains a challenge. During sample preparation, macromolecules interact with the air-water interface, which often leads to detrimental effects such as denaturation or adoption of preferred orientations, ultimately hindering structure determination. Randomly biotinylating the protein of interest (for example, at its primary amines) and then tethering it to a cryo-EM grid coated with two-dimensional crystals of streptavidin (acting as an affinity surface) can prevent the protein from interacting with the air-water interface. Recently, this approach was successfully used to solve a high-resolution structure of a test sample, a bacterial ribosome. However, whether this method can be used for samples where interaction with the air-water interface has been shown to be problematic remains to be determined. Here we report a 3.1 Šstructure of an RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion (Pol II EC(CPD)) solved using streptavidin grids. Our previous attempt to solve this structure using conventional sample preparation methods resulted in a poor quality cryo-EM map due to Pol II EC(CPD)'s adopting a strong preferred orientation. Imaging the same sample on streptavidin grids improved the angular distribution of its view, resulting in a high-resolution structure. This work shows that streptavidin affinity grids can be used to address known challenges posed by the interaction with the air-water interface.


Assuntos
Dano ao DNA , Dímeros de Pirimidina/química , RNA Polimerase II/química , Proteínas de Saccharomyces cerevisiae/química , Biotinilação , Microscopia Crioeletrônica , Cristalização , Modelos Moleculares , Conformação Proteica , Dímeros de Pirimidina/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estreptavidina/química , Água/química
12.
J Struct Biol ; 203(3): 230-235, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29864529

RESUMO

Access to streamlined computational resources remains a significant bottleneck for new users of cryo-electron microscopy (cryo-EM). To address this, we have developed tools that will submit cryo-EM analysis routines and atomic model building jobs directly to Amazon Web Services (AWS) from a local computer or laptop. These new software tools ("cryoem-cloud-tools") have incorporated optimal data movement, security, and cost-saving strategies, giving novice users access to complex cryo-EM data processing pipelines. Integrating these tools into the RELION processing pipeline and graphical user interface we determined a 2.2 Šstructure of ß-galactosidase in ∼55 h on AWS. We implemented a similar strategy to submit Rosetta atomic model building and refinement to AWS. These software tools dramatically reduce the barrier for entry of new users to cloud computing for cryo-EM and are freely available at cryoem-tools.cloud.


Assuntos
Biologia Computacional/métodos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , beta-Galactosidase/química , beta-Galactosidase/ultraestrutura
13.
bioRxiv ; 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39416051

RESUMO

Cytoplasmic dynein-1 (dynein) is an essential molecular motor controlled in part by autoinhibition. We recently identified a structure of partially autoinhibited dynein bound to Lis1, a key dynein regulator mutated in the neurodevelopmental disease lissencephaly. This structure provides an intermediate state in dynein's activation pathway; however, other structural information is needed to fully explain Lis1 function in dynein activation. Here, we used cryo-EM and samples incubated with ATP for different times to reveal novel conformations that we propose represent intermediate states in the dynein's activation pathway. We solved sixteen high-resolution structures, including seven distinct dynein and dynein-Lis1 structures from the same sample. Our data also support a model in which Lis1 relieves dynein autoinhibition by increasing its basal ATP hydrolysis rate and promoting conformations compatible with complex assembly and motility. Together, this analysis advances our understanding of dynein activation and the contribution of Lis1 to this process.

14.
bioRxiv ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38948781

RESUMO

Parkinson's Disease (PD) is the second most common neurodegenerative disorder. Mutations in leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein containing both a kinase and a GTPase, are a leading cause of the familial form of PD. Pathogenic LRRK2 mutations increase LRRK2 kinase activity. While the bulk of LRRK2 is found in the cytosol, the protein associates with membranes where its Rab GTPase substrates are found, and under certain conditions, with microtubules. Integrative structural studies using single-particle cryo-electron microscopy (cryo-EM) and in situ cryo-electron tomography (cryo-ET) have revealed the architecture of microtubule-associated LRRK2 filaments, and that formation of these filaments requires LRRK2's kinase to be in the active-like conformation. However, whether LRRK2 can interact with and form filaments on microtubules in its autoinhibited state, where the kinase domain is in the inactive conformation and the N-terminal LRR domain covers the kinase active site, was not known. Using cryo-ET, we show that full-length LRRK2 can oligomerize on microtubules in its autoinhibited state. Both WT-LRRK2 and PD-linked LRRK2 mutants formed filaments on microtubules. While these filaments are stabilized by the same interfaces seen in the active-LRRK2 filaments, we observed a new interface involving the N-terminal repeats that were disordered in the active-LRRK2 filaments. The helical parameters of the autoinhibited-LRRK2 filaments are different from those reported for the active-LRRK2 filaments. Finally, the autoinhibited-LRRK2 filaments are shorter and less regular, suggesting they are less stable.

16.
Elife ; 122023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692009

RESUMO

The lissencephaly 1 protein, LIS1, is mutated in type-1 lissencephaly and is a key regulator of cytoplasmic dynein-1. At a molecular level, current models propose that LIS1 activates dynein by relieving its autoinhibited form. Previously we reported a 3.1 Å structure of yeast dynein bound to Pac1, the yeast homologue of LIS1, which revealed the details of their interactions (Gillies et al., 2022). Based on this structure, we made mutations that disrupted these interactions and showed that they were required for dynein's function in vivo in yeast. We also used our yeast dynein-Pac1 structure to design mutations in human dynein to probe the role of LIS1 in promoting the assembly of active dynein complexes. These mutations had relatively mild effects on dynein activation, suggesting that there may be differences in how dynein and Pac1/LIS1 interact between yeast and humans. Here, we report cryo-EM structures of human dynein-LIS1 complexes. Our new structures reveal the differences between the yeast and human systems, provide a blueprint to disrupt the human dynein-LIS1 interactions more accurately, and map type-1 lissencephaly disease mutations, as well as mutations in dynein linked to malformations of cortical development/intellectual disability, in the context of the dynein-LIS1 complex.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Proteínas de Saccharomyces cerevisiae , Humanos , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Endorribonucleases/metabolismo
17.
Sci Adv ; 9(48): eadk6191, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039358

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial Parkinson's disease (PD) and a risk factor for the sporadic form. Increased kinase activity was shown in patients with both familial and sporadic PD, making LRRK2 kinase inhibitors a major focus of drug development efforts. Although much progress has been made in understanding the structural biology of LRRK2, there are no available structures of LRRK2 inhibitor complexes. To this end, we solved cryo-electron microscopy structures of LRRK2, wild-type and PD-linked mutants, bound to the LRRK2-specific type I inhibitor MLi-2 and the broad-spectrum type II inhibitor GZD-824. Our structures revealed an active-like LRRK2 kinase in the type I inhibitor complex, and an inactive DYG-out in the type II inhibitor complex. Our structural analysis also showed how inhibitor-induced conformational changes in LRRK2 are affected by its autoinhibitory N-terminal repeats. The structures provide a template for the rational development of LRRK2 kinase inhibitors covering both canonical inhibitor binding modes.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Microscopia Crioeletrônica , Fosforilação , Mutação
18.
Nat Struct Mol Biol ; 30(11): 1735-1745, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857821

RESUMO

Leucine Rich Repeat Kinase 1 and 2 (LRRK1 and LRRK2) are homologs in the ROCO family of proteins in humans. Despite their shared domain architecture and involvement in intracellular trafficking, their disease associations are strikingly different: LRRK2 is involved in familial Parkinson's disease while LRRK1 is linked to bone diseases. Furthermore, Parkinson's disease-linked mutations in LRRK2 are typically autosomal dominant gain-of-function while those in LRRK1 are autosomal recessive loss-of-function. Here, to understand these differences, we solved cryo-EM structures of LRRK1 in its monomeric and dimeric forms. Both differ from the corresponding LRRK2 structures. Unlike LRRK2, which is sterically autoinhibited as a monomer, LRRK1 is sterically autoinhibited in a dimer-dependent manner. LRRK1 has an additional level of autoinhibition that prevents activation of the kinase and is absent in LRRK2. Finally, we place the structural signatures of LRRK1 and LRRK2 in the context of the evolution of the LRRK family of proteins.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Proteínas , Mutação , Proteínas Serina-Treonina Quinases
19.
Nat Struct Mol Biol ; 30(9): 1357-1364, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37620585

RESUMO

Cytoplasmic dynein-1 transports intracellular cargo towards microtubule minus ends. Dynein is autoinhibited and undergoes conformational changes to form an active complex that consists of one or two dynein dimers, the dynactin complex, and activating adapter(s). The Lissencephaly 1 gene, LIS1, is genetically linked to the dynein pathway from fungi to mammals and is mutated in people with the neurodevelopmental disease lissencephaly. Lis1 is required for active dynein complexes to form, but how it enables this is unclear. Here, we present a structure of two yeast dynein motor domains with two Lis1 dimers wedged in-between. The contact sites between dynein and Lis1 in this structure, termed 'Chi,' are required for Lis1's regulation of dynein in Saccharomyces cerevisiae in vivo and the formation of active human dynein-dynactin-activating adapter complexes in vitro. We propose that this structure represents an intermediate in dynein's activation pathway, revealing how Lis1 relieves dynein's autoinhibited state.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Dineínas do Citoplasma , Animais , Humanos , Dineínas do Citoplasma/genética , Dineínas , Transporte Biológico , Citoesqueleto , Complexo Dinactina , Oligonucleotídeos , Mamíferos
20.
Nat Struct Mol Biol ; 14(8): 721-6, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17643123

RESUMO

The Dam1 kinetochore complex is essential for chromosome segregation in budding yeast. This ten-protein complex self-assembles around microtubules, forming ring-like structures that move with depolymerizing microtubule ends, a mechanism with implications for cellular function. Here we used EM-based single-particle and helical analyses to define the architecture of the Dam1 complex at 30-A resolution and the self-assembly mechanism. Ring oligomerization seems to be facilitated by a conformational change upon binding to microtubules, suggesting that the Dam1 ring is not preformed, but self-assembles around kinetochore microtubules. The C terminus of the Dam1p protein, where most of the Aurora kinase Ipl1 phosphorylation sites reside, is in a strategic location to affect oligomerization and interactions with the microtubule. One of Ipl1's roles might be to fine-tune the coupling of the microtubule interaction with the conformational change required for oligomerization, with phosphorylation resulting in ring breakdown.


Assuntos
Proteínas de Ciclo Celular/química , Cinetocoros/química , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Cinetocoros/ultraestrutura , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/química , Modelos Moleculares , Estrutura Molecular , Fosforilação , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA