Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(26): e202318485, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38608197

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy with extremely poor patient survival rates. A key reason for the poor prognosis is the lack of effective diagnostic tools to detect the disease at curable, premetastatic stages. Tumor surgical resection is PDAC's first-line treatment, however distinguishing between cancerous and healthy tissue with current imaging tools remains a challenge. In this work, we report a DOTA-based fluorescent probe targeting plectin-1 for imaging PDAC with high specificity. To enable heterogeneous functionalization of the DOTA-core with multiple targeting peptide units and the fluorophore, a novel, fully clickable synthetic route that proceeds in one pot was developed. Extensive validation of the probe set the stage for PDAC detection in mice and human tissue. Altogether, these findings may pave the way for improved clinical understanding and early detection of PDAC progression as well as more accurate resection criteria.


Assuntos
Meios de Contraste , Compostos Heterocíclicos com 1 Anel , Neoplasias Pancreáticas , Plectina , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Plectina/metabolismo , Animais , Meios de Contraste/química , Camundongos , Compostos Heterocíclicos com 1 Anel/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Imagem Óptica
2.
Gastroenterology ; 161(1): 318-332.e9, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819482

RESUMO

BACKGROUND & AIMS: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. METHODS: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. RESULTS: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. CONCLUSIONS: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.


Assuntos
Proteína 3 do Linfoma de Células B/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Proteína 3 do Linfoma de Células B/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundário , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Carga Tumoral , Células Tumorais Cultivadas
3.
Gastroenterology ; 158(6): 1626-1641.e8, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31930989

RESUMO

BACKGROUND & AIMS: Changes in pancreatic calcium levels affect secretion and might be involved in development of chronic pancreatitis (CP). We investigated the association of CP with the transient receptor potential cation channel subfamily V member 6 gene (TRPV6), which encodes a Ca2+-selective ion channel, in an international cohort of patients and in mice. METHODS: We performed whole-exome DNA sequencing from a patient with idiopathic CP and from his parents, who did not have CP. We validated our findings by sequencing DNA from 300 patients with CP (not associated with alcohol consumption) and 1070 persons from the general population in Japan (control individuals). In replication studies, we sequenced DNA from patients with early-onset CP (20 years or younger) not associated with alcohol consumption from France (n = 470) and Germany (n = 410). We expressed TRPV6 variants in HEK293 cells and measured their activity using Ca2+ imaging assays. CP was induced by repeated injections of cerulein in TRPV6mut/mut mice. RESULTS: We identified the variants c.629C>T (p.A210V) and c.970G>A (p.D324N) in TRPV6 in the index patient. Variants that affected function of the TRPV6 product were found in 13 of 300 patients (4.3%) and 1 of 1070 control individuals (0.1%) from Japan (odds ratio [OR], 48.4; 95% confidence interval [CI], 6.3-371.7; P = 2.4 × 10-8). Twelve of 124 patients (9.7%) with early-onset CP had such variants. In the replication set from Europe, 18 patients with CP (2.0%) carried variants that affected the function of the TRPV6 product compared with 0 control individuals (P = 6.2 × 10-8). Variants that did not affect the function of the TRPV6 product (p.I223T and p.D324N) were overrepresented in Japanese patients vs control individuals (OR, 10.9; 95% CI, 4.5-25.9; P = 7.4 × 10-9 for p.I223T and P = .01 for p.D324N), whereas the p.L299Q was overrepresented in European patients vs control individuals (OR, 3.0; 95% CI, 1.9-4.8; P = 1.2 × 10-5). TRPV6mut/mut mice given cerulein developed more severe pancreatitis than control mice, as shown by increased levels of pancreatic enzymes, histologic alterations, and pancreatic fibrosis. CONCLUSIONS: We found that patients with early-onset CP not associated with alcohol consumption carry variants in TRPV6 that affect the function of its product, perhaps by altering Ca2+ balance in pancreatic cells. TRPV6 regulates Ca2+ homeostasis and pancreatic inflammation.


Assuntos
Idade de Início , Canais de Cálcio/genética , Pancreatite Crônica/genética , Canais de Cátion TRPV/genética , Adolescente , Adulto , Idoso , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Criança , Pré-Escolar , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Mutação INDEL , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Pâncreas/patologia , Pancreatite Crônica/patologia , Polimorfismo de Nucleotídeo Único , Canais de Cátion TRPV/metabolismo , Sequenciamento do Exoma , Adulto Jovem
4.
Gastroenterology ; 156(1): 203-217.e20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296435

RESUMO

BACKGROUND AND AIMS: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. METHODS: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/-;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. RESULTS: A5+/-;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/-;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/-;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/-;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. CONCLUSIONS: In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular , Neoplasias Pancreáticas/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/prevenção & controle , Carcinoma Ductal Pancreático/secundário , Catepsinas/genética , Catepsinas/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genes ras , Heterozigoto , Homozigoto , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , Transdução de Sinais , Carga Tumoral , Células Tumorais Cultivadas
5.
Proc Natl Acad Sci U S A ; 114(1): E85-E94, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27986950

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) cells (PCC) have an exceptional propensity to metastasize early into intratumoral, chemokine-secreting nerves. However, we hypothesized the opposite process, that precancerous pancreatic cells secrete chemokines that chemoattract Schwann cells (SC) of nerves and thus induce ready-to-use routes of dissemination in early carcinogenesis. Here we show a peculiar role for the chemokine CXCL12 secreted in early PDAC and for its receptors CXCR4/CXCR7 on SC in the initiation of neural invasion in the cancer precursor stage and the resulting delay in the onset of PDAC-associated pain. SC exhibited cancer- or hypoxia-induced CXCR4/CXCR7 expression in vivo and in vitro and migrated toward CXCL12-expressing PCC. Glia-specific depletion of CXCR4/CXCR7 in mice abrogated the chemoattraction of SC to PCC. PDAC mice with pancreas-specific CXCL12 depletion exhibited diminished SC chemoattraction to pancreatic intraepithelial neoplasia and increased abdominal hypersensitivity caused by augmented spinal astroglial and microglial activity. In PDAC patients, reduced CXCR4/CXCR7 expression in nerves correlated with increased pain. Mechanistically, upon CXCL12 exposure, SC down-regulated the expression of several pain-associated targets. Therefore, PDAC-derived CXCL12 seems to induce tumor infiltration by SC during early carcinogenesis and to attenuate pain, possibly resulting in delayed diagnosis in PDAC.


Assuntos
Carcinoma Ductal Pancreático/patologia , Quimiocina CXCL12/metabolismo , Quimiotaxia/fisiologia , Dor/prevenção & controle , Neoplasias Pancreáticas/patologia , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Células de Schwann/fisiologia , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Transgênicos
6.
Semin Immunol ; 26(1): 80-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24572992

RESUMO

Interleukin-6 is an important pro-inflammatory cytokine strongly linked to the most burdened exocrine pancreatic diseases including acute pancreatitis, chronic pancreatitis and pancreatic cancer. However, its role in all these diseases is versatile and not completely defined. Several studies provided accumulating evidence that IL-6 is mainly involved in the JAK/STAT pathway activation promoting acute and chronic pancreatitis disease aggravation as well as pancreatic cancer initiation and progression. This review will focus on recent studies illustrating the role of IL-6 in acute and chronic pancreatitis and pancreatic oncogenesis. Further, a short overview of indicated disease pathologies will be given and the impact of IL-6 in JAK/STAT pathway, persistent STAT3 activation and cancer immunotherapy will be discussed.


Assuntos
Interleucina-6/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/metabolismo , Animais , Progressão da Doença , Humanos , Interleucina-6/genética , Terapia de Alvo Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/genética , Pancreatite/tratamento farmacológico , Pancreatite/epidemiologia , Pancreatite/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/genética
8.
Gastroenterology ; 150(2): 499-512.e20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26526716

RESUMO

BACKGROUND & AIMS: Under conditions of inflammation in the absence of micro-organisms (sterile inflammation), necrotic cells release damage-associated molecular patterns that bind to Toll-like receptors on immune cells to activate a signaling pathway that involves activation of IκB kinase and nuclear factor κB (NF-κB). Little is known about the mechanisms that control NF-κB activity during sterile inflammation. We analyzed the contribution of B-cell CLL/lymphoma 3 (BCL3), a transcription factor that associates with NF-κB, in control of sterile inflammation in the pancreas and biliary system of mice. METHODS: Acute pancreatitis (AP) was induced in C57BL/6 (control) and Bcl3(-/-) mice by intraperitoneal injection of cerulein or pancreatic infusion of sodium taurocholate. We also studied Mdr2(-/-) mice, which develop spontaneous biliary inflammation, as well as Bcl3(-/-)Mdr2(-/-) mice. We performed immunohistochemical analyses of inflamed and noninflamed regions of pancreatic tissue from patients with AP or primary sclerosing cholangitis (PSC), as well as from mice. Immune cells were characterized by fluorescence-activated cell sorting analysis. Control or Bcl3(-/-) mice were irradiated, injected with bone marrow from Bcl3(-/-) or control mice, and AP was induced. RESULTS: Pancreatic or biliary tissues from patients with AP or PSC had higher levels of BCL3 and phosphorylated RelA and IκBα in inflamed vs noninflamed regions. Levels of BCL3 were higher in pancreata from control mice given cerulein than from mice without AP, and were higher in biliary tissues from Mdr2(-/-) mice than from control mice. Bcl3(-/-) mice developed more severe AP after administration of cerulein or sodium taurocholate than control mice; pancreata from the Bcl3(-/-) mice with AP had greater numbers of macrophages, myeloid-derived suppressor cells, dendritic cells, and granulocytes than control mice with AP. Activation of NF-κB was significantly prolonged in Bcl3(-/-) mice with AP, compared with control mice with AP. Bcl3(-/-)Mdr2(-/-) mice developed more severe cholestasis and had increased markers of liver injury and increased proliferation of biliary epithelial cells and hepatocytes than Mdr2(-/-) mice. In experiments with bone marrow chimeras, expression of BCL3 by acinar cells, but not myeloid cells, was required for reduction of inflammation during development of AP. BCL3 inhibited ubiquitination and proteasome-mediated degradation of p50 homodimers, which prolonged binding of NF-κB heterodimers to DNA. CONCLUSIONS: BCL3 is up-regulated in inflamed pancreatic or biliary tissues from mice and patients with AP or cholangitis. Its production appears to reduce the inflammatory response in these tissues via blocking ubiquitination and proteasome-mediated degradation of p50 homodimers.


Assuntos
Ductos Biliares/metabolismo , Colangite Esclerosante/prevenção & controle , Pâncreas/metabolismo , Pancreatite/prevenção & controle , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Doença Aguda , Animais , Proteína 3 do Linfoma de Células B , Ductos Biliares/patologia , Transplante de Medula Óssea , Ceruletídeo , Colangite Esclerosante/genética , Colangite Esclerosante/metabolismo , Colangite Esclerosante/patologia , Humanos , Proteínas I-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor de NF-kappaB alfa , Subunidade p50 de NF-kappa B/metabolismo , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Multimerização Proteica , Proteólise , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Ácido Taurocólico , Fatores de Tempo , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Ubiquitinação , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
9.
Gastroenterology ; 151(1): 180-193.e12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27003603

RESUMO

BACKGROUND & AIMS: One treatment strategy for pancreatic ductal adenocarcinoma is to modify, rather than deplete, the tumor stroma. Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) is associated with progression of pancreatic and other solid tumors. We investigated whether loss of P53 function contributes to persistent activation of STAT3 and modification of the pancreatic tumor stroma in patients and mice. METHODS: Stat3, Il6st (encodes gp130), or Trp53 were disrupted, or a mutant form of P53 (P53R172H) or transgenic sgp130 were expressed, in mice that developed pancreatic tumors resulting from expression of activated KRAS (KrasG12D, KC mice). Pancreata were collected and analyzed by immunohistochemistry, in situ hybridization, quantitative reverse-transcription polymerase chain reaction (qPCR), or immunoblot assays; fluorescence-activated cell sorting was performed to identify immune cells. We obtained frozen pancreatic tumor specimens from patients and measured levels of phosphorylated STAT3 and P53 by immunohistochemistry; protein levels were associated with survival using Kaplan-Meier analyses. We measured levels of STAT3, P53, ligands for gp130, interleukin 6, cytokines, sonic hedgehog signaling, STAT3 phosphorylation (activation), and accumulation of reactive oxygen species in primary pancreatic cells from mice. Mice with pancreatic tumors were given gemcitabine and a Janus kinase 2 (JAK2) inhibitor; tumor growth was monitored by 3-dimensional ultrasound. RESULTS: STAT3 was phosphorylated constitutively in pancreatic tumor cells from KC mice with loss or mutation of P53. Tumor cells of these mice accumulated reactive oxygen species and had lower activity of the phosphatase SHP2 and prolonged phosphorylation of JAK2 compared with tumors from KC mice with functional P53. These processes did not require the gp130 receptor. Genetic disruption of Stat3 in mice, or pharmacologic inhibitors of JAK2 or STAT3 activation, reduced fibrosis and the numbers of pancreatic stellate cells in the tumor stroma and altered the types of immune cells that infiltrated tumors. Mice given a combination of gemcitabine and a JAK2 inhibitor formed smaller tumors and survived longer than mice given control agents; the tumor stroma had fewer activated pancreatic stellate cells, lower levels of periostin, and alterations in collagen production and organization. Phosphorylation of STAT3 correlated with P53 mutation and features of infiltrating immune cells in human pancreatic tumors. Patients whose tumors had lower levels of phosphorylated STAT3 and functional P53 had significantly longer survival times than patients with high levels of phosphorylated STAT3 and P53 mutation. CONCLUSIONS: In pancreatic tumors of mice, loss of P53 function activates JAK2-STAT3 signaling, which promotes modification of the tumor stroma and tumor growth and resistance to gemcitabine. In human pancreatic tumors, STAT3 phosphorylation correlated with P53 mutation and patient survival time. Inhibitors of this pathway slow tumor growth and stroma formation, alter immune cell infiltration, and prolong survival of mice. Transcript profiling: ArrayExpress accession number: E-MTAB-3278.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Genes p53/fisiologia , Neoplasias Pancreáticas/genética , Transdução de Sinais/genética , Adenocarcinoma/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Janus Quinase 2/metabolismo , Camundongos , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Fosforilação/genética , Fator de Transcrição STAT3/metabolismo , Gencitabina
10.
Gastroenterology ; 148(3): 626-638.e17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25497209

RESUMO

BACKGROUND & AIMS: Little is known about the mechanisms of the progressive tissue destruction, inflammation, and fibrosis that occur during development of chronic pancreatitis. Autophagy is involved in multiple degenerative and inflammatory diseases, including pancreatitis, and requires the protein autophagy related 5 (ATG5). We created mice with defects in autophagy to determine its role in pancreatitis. METHODS: We created mice with pancreas-specific disruption of Atg5 (Ptf1aCreex1;Atg5F/F mice) and compared them to control mice. Pancreata were collected and histology, immunohistochemistry, transcriptome, and metabolome analyses were performed. ATG5-deficient mice were placed on diets containing 25% palm oil and compared with those on a standard diet. Another set of mice received the antioxidant N-acetylcysteine. Pancreatic tissues were collected from 8 patients with chronic pancreatitis (CP) and compared with pancreata from ATG5-deficient mice. RESULTS: Mice with pancreas-specific disruption of Atg5 developed atrophic CP, independent of ß-cell function; a greater proportion of male mice developed CP than female mice. Pancreata from ATG5-deficient mice had signs of inflammation, necrosis, acinar-to-ductal metaplasia, and acinar-cell hypertrophy; this led to tissue atrophy and degeneration. Based on transcriptome and metabolome analyses, ATG5-deficient mice produced higher levels of reactive oxygen species than control mice, and had insufficient activation of glutamate-dependent metabolism. Pancreata from these mice had reduced autophagy, increased levels of p62, and increases in endoplasmic reticulum stress and mitochondrial damage, compared with tissues from control mice; p62 signaling to Nqo1 and p53 was also activated. Dietary antioxidants, especially in combination with palm oil-derived fatty acids, blocked progression to CP and pancreatic acinar atrophy. Tissues from patients with CP had many histologic similarities to those from ATG5-deficient mice. CONCLUSIONS: Mice with pancreas-specific disruption of Atg5 develop a form of CP similar to that of humans. CP development appears to involve defects in autophagy, glutamate-dependent metabolism, and increased production of reactive oxygen species. These mice might be used to identify therapeutic targets for CP.


Assuntos
Autofagia/genética , Estresse do Retículo Endoplasmático/genética , Proteínas Associadas aos Microtúbulos/genética , Pâncreas/metabolismo , Pancreatite Crônica/genética , Acetilcisteína/farmacologia , Animais , Atrofia , Autofagia/imunologia , Proteína 5 Relacionada à Autofagia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/imunologia , Feminino , Sequestradores de Radicais Livres/farmacologia , Humanos , Inflamação , Masculino , Camundongos , Camundongos Knockout , NAD(P)H Desidrogenase (Quinona)/metabolismo , Óleo de Palmeira , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Pancreatite Crônica/imunologia , Pancreatite Crônica/patologia , Óleos de Plantas/farmacologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Fatores Sexuais , Proteína Supressora de Tumor p53/imunologia , Proteína Supressora de Tumor p53/metabolismo
11.
Gastroenterology ; 144(1): 192-201, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23041330

RESUMO

BACKGROUND & AIMS: The transcription factor nuclear factor-κB (NF-κB) (a heterodimer of NF-κB1p50 and RelA) is activated rapidly in acute pancreatitis (AP). However, it is not clear whether NF-κB promotes or protects against AP. We used the NF-κB inhibitor protein, inhibitor of κB (IκB)α, to study the roles of NF-κB in the development of AP in mice. METHODS: IκBα or the combination of IκBα and RelA selectively were deleted from pancreas of mice using the Cre/locus of cross-over P strategy; cerulein or L-arginine were used to induce AP. We performed microarray analyses of the IκBα- and RelA-deficient pancreata. DNA from healthy individuals and patients with acute or chronic pancreatitis were analyzed for variants in coding regions of alpha-1-antichymotrypsin. RESULTS: Mice with pancreas-specific deletion of IκBα had constitutive activation of RelA and a gene expression profile consistent with NF-κB activation; development of AP in these mice was attenuated and trypsin activation was impaired. However, AP was fully induced in mice with pancreas-specific deletion of IκBα and RelA. By using genome-wide expression analysis, we identified a cluster of NF-κB-regulated genes that might protect against the development of AP. The serine protease inhibitor 2A (Spi2a) was highly up-regulated in IκBα-deficient mice. Lentiviral-mediated expression of Spi2A reduced the development of AP in C57BL/6 and RelA-deficient mice. However, we did not correlate any variants of alpha-1-antichymotrypsin, the human homologue of Spi2a, with acute or chronic pancreatitis. CONCLUSIONS: Pancreas-specific deletion of IκBα results in nuclear translocation of RelA and reduces AP induction and trypsin activation in mice after administration of cerulein or L-arginine. Constitutive activation of RelA up-regulates Spi2A, which protects mice against the development of AP.


Assuntos
Proteínas I-kappa B/genética , NF-kappa B/metabolismo , Pancreatite/genética , Pancreatite/metabolismo , Serpinas/genética , Fator de Transcrição RelA/genética , alfa 1-Antiquimotripsina/genética , Células Acinares , Animais , Arginina , Ceruletídeo , Citosol/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Vetores Genéticos , Genótipo , Proteínas I-kappa B/metabolismo , Lentivirus , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Inibidor de NF-kappaB alfa , Proteínas Nucleares/metabolismo , Pâncreas/enzimologia , Pancreatite/induzido quimicamente , Pancreatite/patologia , Fosforilação , Serpinas/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Tripsina/metabolismo , Regulação para Cima
12.
J Clin Invest ; 134(7)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557489

RESUMO

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Assuntos
Canais de Cálcio , Cálcio , Camundongos , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Pâncreas/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/genética
13.
Int J Cancer ; 132(10): 2248-57, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23115126

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents the fourth leading cause of cancer death in the western world, with a 5-year survival rate below 5%. Murine double minute 2 (Mdm2) is an important negative regulator of the tumor suppressor p53. Reactivation of wild-type p53 is a promising treatment strategy, and inhibitors of Mdm2 have already entered clinical trials. To investigate the effects of Mdm2 inhibitors in PDAC, we used a murine cell line platform with a genetically defined status of p53. Here, we describe that Mdm2 inhibitors can act on a subset of murine PDAC cell lines p53 independently. Furthermore, we observed that Mdm2 inhibitors increase the sensitivity of murine PDAC cell lines toward topoisomerase II inhibitors by inducing effector caspase-independent cell death. The combination of Mdm2 inhibitors with topoisomerase II inhibitors acts independent of the survival factor NFκB/RelA. Mechanistically, Mdm2 inhibitors increase topoisomerase II inhibitor-induced DNA double-strand breaks. We show that Mdm2 binds to Nbs1 of the Mre11-Rad50-Nijmegen breakage syndrome (Nbs) 1 DNA repair complex. In addition, we provide evidence that Mdm2 inhibitors delay DNA repair. These findings may help to design novel therapeutic strategies to overcome therapeutic resistance of PDAC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Indóis/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinonas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Etoposídeo/farmacologia , Imidazóis/farmacologia , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Neoplasias Pancreáticas/metabolismo , Piperazinas/farmacologia , Gencitabina
14.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607005

RESUMO

Solid cancers like pancreatic ductal adenocarcinoma (PDAC), a type of pancreatic cancer, frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modeled in genetically engineered mouse models (GEMM) of PDAC. Here, we systematically screened for human-like NI in Europe's largest repository of GEMM of PDAC, comprising 295 different genotypes. This phenotype screen uncovered 2 GEMMs of PDAC with human-like NI, which are both characterized by pancreas-specific overexpression of transforming growth factor α (TGF-α) and conditional depletion of p53. Mechanistically, cancer-cell-derived TGF-α upregulated CCL2 secretion from sensory neurons, which induced hyperphosphorylation of the cytoskeletal protein paxillin via CCR4 on cancer cells. This activated the cancer migration machinery and filopodia formation toward neurons. Disrupting CCR4 or paxillin activity limited NI and dampened tumor size and tumor innervation. In human PDAC, phospho-paxillin and TGF-α-expression constituted strong prognostic factors. Therefore, we believe that the TGF-α-CCL2-CCR4-p-paxillin axis is a clinically actionable target for constraining NI and tumor progression in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Paxilina/genética , Paxilina/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Fenótipo , Linhagem Celular Tumoral , Neoplasias Pancreáticas
15.
Gastroenterology ; 141(4): 1473-85, 1485.e1-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21763242

RESUMO

BACKGROUND & AIMS: Little is known about how transcription factors might regulate pathogenesis of chronic pancreatitis (CP). We analyzed the in vivo role of RelA/p65, a component of the transcription factor nuclear factor (NF)-κB, in different cell types during development of CP in mice. METHODS: RelA/p65 was functionally inactivated in the pancreas (relaΔpanc), in myeloid cells (relaΔmye), or both (relaΔpanc,Δmye) compartments using the Cre-loxP strategy. Experimental CP was induced with repetitive injections of cerulein over 6 weeks. Pancreata were investigated histologically and biochemically. We created an in vitro coculture assay of pancreatic stellate cells (PSC) and macrophages and performed gene arrays from pancreata and macrophages with functionally inactivated RelA/p65. Tissue samples from patients with CP were analyzed for matrix metalloproteinase (MMP) 10 expression. RESULTS: In contrast to their relaF/F littermates, relaΔpanc displayed typical signs of CP after long-term stimulation with cerulein. Numerous macrophages and activated α-smooth muscle actin (SMA)-positive PSCs were detected. Additional inactivation of RelA/p65 in myeloid cells (relaΔpanc,Δmye) attenuated fibrosis. In vitro, RelA/p65-deficient, lipopolysaccharide (LPS)-stimulated macrophages degraded fibronectin in cocultured PSCs. Using gene expression analysis, MMP-10 was identified as a candidate for this process. Recombinant MMP-10 degraded fibronectin in LPS-stimulated PSCs. In tissue samples from patients with CP, MMP-10 was up-regulated in myeloid cells. CONCLUSIONS: RelA/p65 functions in myeloid cells to promote pathogenesis of CP. In acinar cells, RelA/p65 protects against chronic inflammation, whereas myeloid RelA/p65 promotes fibrogenesis. In macrophage, MMP-10 functions as a RelA/p65-dependent, potentially antifibrogenic factor during progression of CP.


Assuntos
Células Mieloides/metabolismo , Pâncreas/metabolismo , Pancreatite Crônica/metabolismo , Fator de Transcrição RelA/metabolismo , Actinas/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Ceruletídeo , Técnicas de Cocultura , Modelos Animais de Doenças , Fibronectinas/metabolismo , Fibrose , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Metaloproteinase 10 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/patologia , Pâncreas/patologia , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Fatores de Tempo , Fator de Transcrição RelA/deficiência , Fator de Transcrição RelA/genética
16.
Gastroenterology ; 141(2): 719-30, 730.e1-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21684285

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease without effective chemopreventive or therapeutic approaches. Although the role of oncogenic Kras in initiating development of PDAC is well established, downstream targets of aberrant Ras signaling are poorly understood. Acinar-ductal metaplasia (ADM) appears to be an important prerequisite for development of pancreatic intraepithelial neoplasia (PanIN), a common precursor to PDAC. RAS-related C3 botulinum substrate 1 (Rac1), which controls actin reorganization, can be activated by Ras, is up-regulated in several human cancers, and is required for cerulein-induced morphologic changes in acini. We investigated effects of loss of Rac1 in Kras-induced pancreatic carcinogenesis in mice. METHODS: Using a Cre/lox approach, we deleted Rac1 from pancreatic progenitor cells in different mouse models of PDAC and in mice with cerulein-induced acute pancreatitis. Acinar epithelial explants of mutant mice were used to investigate the role of Rac1 in vitro. RESULTS: Rac1 expression increased in mouse and human pancreatic tumors, particularly in the stroma. Deletion of Rac1 in Kras(G12D)-induced PDAC in mice reduced formation of ADM, PanIN, and tumors and significantly prolonged survival. Pancreatic epithelial metaplasia was accompanied by apical-basolateral redistribution of F-actin, along with basal expression of Rac1. Acinar epithelial explants that lacked Rac1 or that were incubated with inhibitors of actin polymerization had a reduced ability to undergo ADM in 3-dimensional cultures. CONCLUSIONS: In mice, Rac1 is required for early metaplastic changes and neoplasia-associated actin rearrangements in development of pancreatic cancer. Rac1 might be developed as a diagnostic marker or therapeutic target for PDAC.


Assuntos
Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Metaplasia/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ceruletídeo , Genes ras , Humanos , Estimativa de Kaplan-Meier , Queratina-19/metabolismo , Metaplasia/genética , Metaplasia/patologia , Camundongos , Modelos Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Pancreatite/patologia , Taxa de Sobrevida , Proteínas rac1 de Ligação ao GTP/deficiência , Proteínas rac1 de Ligação ao GTP/genética
17.
Cell Rep Med ; 3(11): 100815, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384095

RESUMO

Over 90% of pancreatic cancers present mutations in KRAS, one of the most common oncogenic drivers overall. Currently, most KRAS mutant isoforms cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive resistance mechanisms. We report here on the combined inhibition of SHP2, upstream of KRAS, using the allosteric inhibitor RMC-4550 and of ERK, downstream of KRAS, using LY3214996. This combination shows synergistic anti-cancer activity in vitro, superior disruption of the MAPK pathway, and increased apoptosis induction compared with single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination, with significant tumor regression in multiple pancreatic ductal adenocarcinoma (PDAC) mouse models. Finally, we show evidence that 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) can be used to assess early drug responses in animal models. Based on these results, we will investigate this drug combination in the SHP2 and ERK inhibition in pancreatic cancer (SHERPA; ClinicalTrials.gov: NCT04916236) clinical trial, enrolling patients with KRAS-mutant PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Ensaios Clínicos como Assunto , Neoplasias Pancreáticas
18.
Gastroenterology ; 138(4): 1585-94, 1594.e1-3, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20038432

RESUMO

BACKGROUND & AIMS: Acute pancreatitis (AP) is a serious, unpredictable clinical problem, the pathophysiology of which is poorly understood. Here, we evaluate whether betacellulin (BTC), a ligand of the epidermal growth factor receptor also able to activate the proapoptotic ERBB4 receptor, can protect against experimental AP. METHODS: AP was induced in transgenic mice overexpressing BTC (BTC-tg), control mice, or control mice after administration of recombinant BTC. The severity of pancreatitis was assessed by measurements of serum amylase and lipase and histologic grading. The involvement of the stress-activated protein kinase (SAPK) was evaluated by treating BTC-tg mice with an SAPK inhibitor before induction of AP. RESULTS: BTC-tg mice showed increased apoptosis and proliferation in the exocrine pancreas, indicating an increased cell turnover. There was a marked, epidermal growth factor receptor-independent decrease in pancreas weight. After induction of AP by cerulein injection, BTC-tg mice showed a significantly lower increase in serum amylase and lipase levels as well as less pronounced tissue necrosis, edema, and inflammation, as compared to nontransgenic littermates. This protective effect, also confirmed in the L-arginine AP model, was associated with increased phosphorylation of SAPK and abrogated after treatment of BTC-tg mice with a SAPK inhibitor. Finally, the protective effect of BTC against AP was confirmed by treating nontransgenic mice with recombinant BTC. CONCLUSIONS: These findings indicate a potential application of the BTC/ERBB4 pathway for modulating the course of AP.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Pancreatite/prevenção & controle , Doença Aguda , Animais , Antracenos/farmacologia , Apoptose , Betacelulina , Proliferação de Células , Receptores ErbB/fisiologia , Camundongos , Camundongos Transgênicos , Pâncreas/patologia , Pancreatite/patologia , Receptor ErbB-4
19.
Cell Rep Med ; 2(11): 100434, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841287

RESUMO

miRNAs have crucial functions in many biological processes and are candidate biomarkers of disease. Here, we show that miR-216a is a conserved, pancreas-specific miRNA with important roles in pancreatic islet and acinar cells. Deletion of miR-216a in mice leads to a reduction in islet size, ß-cell mass, and insulin levels. Single-cell RNA sequencing reveals a subpopulation of ß-cells with upregulated acinar cell markers under a high-fat diet. miR-216a is induced by TGF-ß signaling, and inhibition of miR-216a increases apoptosis and decreases cell proliferation in pancreatic cells. Deletion of miR-216a in the pancreatic cancer-prone mouse line KrasG12D;Ptf1aCreER reduces the propensity of pancreatic cancer precursor lesions. Notably, circulating miR-216a levels are elevated in both mice and humans with pancreatic cancer. Collectively, our study gives insights into how ß-cell mass and acinar cell growth are modulated by a pancreas-specific miRNA and also suggests miR-216a as a potential biomarker for diagnosis of pancreatic diseases.


Assuntos
Progressão da Doença , Deleção de Genes , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular , Dieta Hiperlipídica , Humanos , Secreção de Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Especificidade de Órgãos , Ratos
20.
J Clin Invest ; 117(6): 1490-501, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17525802

RESUMO

Activation of the transcription factor NF-kappaB/Rel has been shown to be involved in inflammatory disease. Here we studied the role of RelA/p65, the main transactivating subunit, during acute pancreatitis using a Cre-loxP strategy. Selective truncation of the rela gene in pancreatic exocrine cells led to both severe injury of the acinar cells and systemic complications including lung and liver damage. Our data demonstrated that expression and induction of the protective pancreas-specific acute phase protein pancreatitis-associated protein 1 (PAP1) depended on RelA/p65. Lentiviral gene transfer of PAP1 cDNA reduced the extent of necrosis and infiltration in the pancreata of mice with selective truncation of RelA/p65. These results provide in vivo evidence for RelA/p65 protection of acinar cell death via upregulation of PAP1. Moreover, our data underscore the pancreas-specific role of NF-kappaB/Rel and suggest multidimensional roles of NF-kappaB/Rel in different cells and contexts during inflammation.


Assuntos
Pancreatite/etiologia , Fator de Transcrição RelA/genética , Animais , Sequência de Bases , Morte Celular , Ceruletídeo/toxicidade , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Pancreatite/genética , Pancreatite/patologia , Pancreatite/fisiopatologia , Proteínas Associadas a Pancreatite , Proteínas/antagonistas & inibidores , Proteínas/genética , Proteínas/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Deleção de Sequência , Fator de Transcrição RelA/deficiência , Fator de Transcrição RelA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA