Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969858

RESUMO

Brain metastases are a leading cause of death in patients with breast cancer. The lack of clinical trials and the presence of the blood-brain barrier limit therapeutic options. Furthermore, overexpression of the human epidermal growth factor receptor 2 (HER2) increases the incidence of breast cancer brain metastases (BCBM). HER2-targeting agents, such as the monoclonal antibodies trastuzumab and pertuzumab, improved outcomes in patients with breast cancer and extracranial metastases. However, continued BCBM progression in breast cancer patients highlighted the need for novel and effective targeted therapies against intracranial metastases. In this study, we engineered the highly migratory and brain tumor tropic human neural stem cells (NSCs) LM008 to continuously secrete high amounts of functional, stable, full-length antibodies against HER2 (anti-HER2Ab) without compromising the stemness of LM008 cells. The secreted anti-HER2Ab impaired tumor cell proliferation in vitro in HER2+ BCBM cells by inhibiting the PI3K-Akt signaling pathway and resulted in a significant benefit when injected in intracranial xenograft models. In addition, dual HER2 blockade using anti-HER2Ab LM008 NSCs and the tyrosine kinase inhibitor tucatinib significantly improved the survival of mice in a clinically relevant model of multiple HER2+ BCBM. These findings provide compelling evidence for the use of HER2Ab-secreting LM008 NSCs in combination with tucatinib as a promising therapeutic regimen for patients with HER2+ BCBM.


Assuntos
Antineoplásicos Imunológicos/metabolismo , Neoplasias Encefálicas , Neoplasias Experimentais , Células-Tronco Neurais , Oxazóis/farmacologia , Piridinas/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2 , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Trends Immunol ; 42(4): 280-292, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663953

RESUMO

Glioblastoma (GBM) is a lethal form of primary brain tumor in human adults. The impact of tumor-intrinsic alterations is not exclusively confined to cancer cells but can also be extended to the tumor microenvironment (TME). Glioblastoma-associated macrophages/microglia (GAMs) are a prominent type of immune cells that account for up to 50% of total cells in GBM. Emerging evidence suggests that context-dependent GBM-GAM symbiotic interactions are pivotal for tumor growth and progression. Here, we discuss how specific genetic alterations in GBM cells affect GAM biology and, reciprocally, how GAMs support GBM progression. We hypothesize that understanding context-dependent GBM-GAM symbiosis may reveal the molecular basis of GBM tumorigenesis and lead to novel candidate treatment approaches aiming to improve GBM patient outcomes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/genética , Glioblastoma/genética , Humanos , Macrófagos , Microglia , Simbiose , Microambiente Tumoral
3.
J Neurooncol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865011

RESUMO

INTRODUCTION: Central Neurocytoma (CN) is a rare, WHO grade 2 brain tumor that predominantly affects young adults. Gross total resection (GTR) is often curative for CNs, but the optimal treatment paradigm including incorporation of RT, following subtotal resection (STR) and for scarcer pediatric cases has yet to be established. METHODS: Patients between 2001 and 2021 with a pathologic diagnosis of CN were reviewed. Demographic, treatment, and tumor characteristics were recorded. Recurrence free survival (RFS) and overall survival (OS) were calculated according to the Kaplan Meier-method. Post-RT tumor volumetric regression analysis was performed. RESULTS: Seventeen adults (≥ 18 years old) and 5 children (< 18 years old) met the criteria for data analysis (n = 22). With a median follow-up of 6.9 years, there was no tumor-related mortality. Patients who received STR and/or had atypical tumors (using a cut-off of Ki-67 > 4%) experienced decreased RFS compared to those who received GTR and/or were without atypical tumors. RFS at 5 years for typical CNs was 67% compared to 22% for atypical CNs. Every pediatric tumor was atypical and 3/5 recurred within 5 years. Salvage RT following tumor recurrence led to no further recurrences within the timeframe of continued follow-up; volumetric analysis for 3 recurrent tumors revealed an approximately 80% reduction in tumor size. CONCLUSION: We provide encouraging evidence that CNs treated with GTR or with RT after tumor recurrence demonstrate good long-term tumor control.

4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627401

RESUMO

Glioblastoma (GBM) is the most lethal primary brain tumor in adults. No treatment provides durable relief for the vast majority of GBM patients. In this study, we've tested a bispecific antibody comprised of single-chain variable fragments (scFvs) against T cell CD3ε and GBM cell interleukin 13 receptor alpha 2 (IL13Rα2). We demonstrate that this bispecific T cell engager (BiTE) (BiTELLON) engages peripheral and tumor-infiltrating lymphocytes harvested from patients' tumors and, in so doing, exerts anti-GBM activity ex vivo. The interaction of BiTELLON with T cells and IL13Rα2-expressing GBM cells stimulates T cell proliferation and the production of proinflammatory cytokines interferon γ (IFNγ) and tumor necrosis factor α (TNFα). We have modified neural stem cells (NSCs) to produce and secrete the BiTELLON (NSCLLON). When injected intracranially in mice with a brain tumor, NSCLLON show tropism for tumor, secrete BiTELLON, and remain viable for over 7 d. When injected directly into the tumor, NSCLLON provide a significant survival benefit to mice bearing various IL13Rα2+ GBMs. Our results support further investigation and development of this therapeutic for clinical translation.


Assuntos
Glioblastoma/imunologia , Glioblastoma/metabolismo , Imunomodulação , Ativação Linfocitária/imunologia , Células-Tronco Neurais/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Comunicação Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Glioblastoma/patologia , Xenoenxertos , Humanos , Mediadores da Inflamação/metabolismo , Camundongos
5.
Lancet Oncol ; 24(5): 509-522, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142373

RESUMO

BACKGROUND: Low-intensity pulsed ultrasound with concomitant administration of intravenous microbubbles (LIPU-MB) can be used to open the blood-brain barrier. We aimed to assess the safety and pharmacokinetics of LIPU-MB to enhance the delivery of albumin-bound paclitaxel to the peritumoural brain of patients with recurrent glioblastoma. METHODS: We conducted a dose-escalation phase 1 clinical trial in adults (aged ≥18 years) with recurrent glioblastoma, a tumour diameter of 70 mm or smaller, and a Karnofsky performance status of at least 70. A nine-emitter ultrasound device was implanted into a skull window after tumour resection. LIPU-MB with intravenous albumin-bound paclitaxel infusion was done every 3 weeks for up to six cycles. Six dose levels of albumin-bound paclitaxel (40 mg/m2, 80 mg/m2, 135 mg/m2, 175 mg/m2, 215 mg/m2, and 260 mg/m2) were evaluated. The primary endpoint was dose-limiting toxicity occurring during the first cycle of sonication and albumin-bound paclitaxel chemotherapy. Safety was assessed in all treated patients. Analyses were done in the per-protocol population. Blood-brain barrier opening was investigated by MRI before and after sonication. We also did pharmacokinetic analyses of LIPU-MB in a subgroup of patients from the current study and a subgroup of patients who received carboplatin as part of a similar trial (NCT03744026). This study is registered with ClinicalTrials.gov, NCT04528680, and a phase 2 trial is currently open for accrual. FINDINGS: 17 patients (nine men and eight women) were enrolled between Oct 29, 2020, and Feb 21, 2022. As of data cutoff on Sept 6, 2022, median follow-up was 11·89 months (IQR 11·12-12·78). One patient was treated per dose level of albumin-bound paclitaxel for levels 1 to 5 (40-215 mg/m2), and 12 patients were treated at dose level 6 (260 mg/m2). A total of 68 cycles of LIPU-MB-based blood-brain barrier opening were done (median 3 cycles per patient [range 2-6]). At a dose of 260 mg/m2, encephalopathy (grade 3) occurred in one (8%) of 12 patients during the first cycle (considered a dose-limiting toxicity), and in one other patient during the second cycle (grade 2). In both cases, the toxicity resolved and treatment continued at a lower dose of albumin-bound paclitaxel, with a dose of 175 mg/m2 in the case of the grade 3 encephalopathy, and to 215 mg/m2 in the case of the grade 2 encephalopathy. Grade 2 peripheral neuropathy was observed in one patient during the third cycle of 260 mg/m2 albumin-bound paclitaxel. No progressive neurological deficits attributed to LIPU-MB were observed. LIPU-MB-based blood-brain barrier opening was most commonly associated with immediate yet transient grade 1-2 headache (12 [71%] of 17 patients). The most common grade 3-4 treatment-emergent adverse events were neutropenia (eight [47%]), leukopenia (five [29%]), and hypertension (five [29%]). No treatment-related deaths occurred during the study. Imaging analysis showed blood-brain barrier opening in the brain regions targeted by LIPU-MB, which diminished over the first 1 h after sonication. Pharmacokinetic analyses showed that LIPU-MB led to increases in the mean brain parenchymal concentrations of albumin-bound paclitaxel (from 0·037 µM [95% CI 0·022-0·063] in non-sonicated brain to 0·139 µM [0·083-0·232] in sonicated brain [3·7-times increase], p<0·0001) and carboplatin (from 0·991 µM [0·562-1·747] in non-sonicated brain to 5·878 µM [3·462-9·980] µM in sonicated brain [5·9-times increase], p=0·0001). INTERPRETATION: LIPU-MB using a skull-implantable ultrasound device transiently opens the blood-brain barrier allowing for safe, repeated penetration of cytotoxic drugs into the brain. This study has prompted a subsequent phase 2 study combining LIPU-MB with albumin-bound paclitaxel plus carboplatin (NCT04528680), which is ongoing. FUNDING: National Institutes of Health and National Cancer Institute, Moceri Family Foundation, and the Panattoni family.


Assuntos
Encefalopatias , Glioblastoma , Adulto , Masculino , Humanos , Feminino , Adolescente , Paclitaxel Ligado a Albumina/efeitos adversos , Carboplatina , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Barreira Hematoencefálica , Paclitaxel , Encefalopatias/induzido quimicamente , Encefalopatias/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
6.
J Neurooncol ; 164(1): 11-29, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37458855

RESUMO

INTRODUCTION: Glioma is the most common primary brain tumor and is often associated with treatment resistance and poor prognosis. Standard treatment typically involves radiotherapy and temozolomide-based chemotherapy, both of which induce cellular senescence-a tumor suppression mechanism. DISCUSSION: Gliomas employ various mechanisms to bypass or escape senescence and remain in a proliferative state. Importantly, senescent cells remain viable and secrete a large number of factors collectively known as the senescence-associated secretory phenotype (SASP) that, paradoxically, also have pro-tumorigenic effects. Furthermore, senescent cells may represent one form of tumor dormancy and play a role in glioma recurrence and progression. CONCLUSION: In this article, we delineate an overview of senescence in the context of gliomas, including the mechanisms that lead to senescence induction, bypass, and escape. Furthermore, we examine the role of senescent cells in the tumor microenvironment and their role in tumor progression and recurrence. Additionally, we highlight potential therapeutic opportunities for targeting senescence in glioma.


Assuntos
Senescência Celular , Glioma , Humanos , Carcinogênese , Microambiente Tumoral
7.
Int J Cancer ; 151(2): 167-180, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35179776

RESUMO

Malignant brain tumors, such as glioblastoma multiforme (GBM) and brain metastases, continue to be an unmet medical challenge. Despite advances in cancer diagnostics and therapeutics, tumor cell colonization in the central nervous system renders most treatment options ineffective. This is primarily due to the selective permeability of the blood-brain barrier (BBB), which hinders the crossing of targeting agents into the brain. As such, repositioning medications that demonstrate anticancer effects and possess the ability to cross the BBB can be a promising option. Antidepressants, which are BBB-permeable, have been reported to exhibit cytotoxicity against tumor cells. Autophagy, specifically, has been identified as one of the common key mediators of antidepressant's antitumor effects. In this work, we provide a comprehensive overview of US Food and Drug Administration (FDA)-approved antidepressants with reported cytotoxic activities in different tumor models, where autophagy dysregulation was demonstrated to play the main part. As such, imipramine, maprotiline, fluoxetine and escitalopram were shown to induce autophagy, whereas nortriptyline, clomipramine and paroxetine were identified as autophagy inhibitors. Sertraline and desipramine, depending on the neoplastic context, were demonstrated to either induce or inhibit autophagy. Collectively, these medications were associated with favorable therapeutic outcomes in a variety of cancer cell models, including brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Antidepressivos/uso terapêutico , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Reposicionamento de Medicamentos , Glioblastoma/patologia , Humanos
8.
J Neurooncol ; 156(3): 443-452, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35048267

RESUMO

Leptomeningeal metastases (LM) constitute an involvement of cancer which is associated with marked morbidity and mortality. The contemporary diagnostic and therapeutic management of LM from solid tumors is reviewed. Therapeutic modalities including systemic therapies, cerebrospinal fluid (CSF)-directed therapies, and radiation therapy are discussed. This is to provide context for how the field of LM management may evolve in the near term. The future directions currently undergoing investigation for diagnostic, response assessment, and therapeutic purposes are highlighted. This is done within the context of the pathophysiology of the disease. Specifically the role of CSF circulating tumor cells and cell free circulating tumor DNA in diagnosis and response assement are reviewed. Novel therapeutic approaches across a range of modalities are discussed. Numerous ongoing studies which have the potential to alter the management of LM are referenced.


Assuntos
Carcinomatose Meníngea , Humanos , Carcinomatose Meníngea/diagnóstico , Carcinomatose Meníngea/terapia
9.
Semin Neurol ; 42(6): 752-757, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36417993

RESUMO

Neuro-oncology encompasses a broad field focusing on an array of neoplasms, many of which can mimic several diseases. Neurologists will often be involved in the initial diagnostic evaluation and management of these patients. Their insight is central to optimizing the diagnostic yield and providing high-level clinical care. Several neuro-oncologic cases are reviewed with a goal of increasing the understanding of these diseases in a clinically relevant manner and providing updates on the contemporary thinking in the subspecialty.


Assuntos
Neoplasias Encefálicas , Neurologia , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Oncologia , Neurologistas
10.
Brain ; 144(4): 1046-1066, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33893488

RESUMO

Brain metastases are the most common type of brain tumours, harbouring an immune microenvironment that can in principle be targeted via immunotherapy. Elucidating some of the immunological intricacies of brain metastases has opened a therapeutic window to explore the potential of immune checkpoint inhibitors in this globally lethal disease. Multiple lines of evidence suggest that tumour cells hijack the immune regulatory mechanisms in the brain for the benefit of their own survival and progression. Nonetheless, the role of the immune checkpoint in the complex interplays between cancers cells and T cells and in conferring resistance to therapy remains under investigation. Meanwhile, early phase trials with immune checkpoint inhibitors have reported clinical benefit in patients with brain metastases from melanoma and non-small cell lung cancer. In this review, we explore the workings of the immune system in the brain, the immunology of brain metastases, and the current status of immune checkpoint inhibitors in the treatment of brain metastases.


Assuntos
Neoplasias Encefálicas/imunologia , Encéfalo/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Metástase Neoplásica/imunologia , Evasão Tumoral/imunologia , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Humanos , Metástase Neoplásica/tratamento farmacológico , Evasão Tumoral/efeitos dos fármacos
11.
Brain ; 144(4): 1230-1246, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33855339

RESUMO

Glioblastoma is a primary brain cancer with a near 100% recurrence rate. Upon recurrence, the tumour is resistant to all conventional therapies, and because of this, 5-year survival is dismal. One of the major drivers of this high recurrence rate is the ability of glioblastoma cells to adapt to complex changes within the tumour microenvironment. To elucidate this adaptation's molecular mechanisms, specifically during temozolomide chemotherapy, we used chromatin immunoprecipitation followed by sequencing and gene expression analysis. We identified a molecular circuit in which the expression of ciliary protein ADP-ribosylation factor-like protein 13B (ARL13B) is epigenetically regulated to promote adaptation to chemotherapy. Immuno-precipitation combined with liquid chromatography-mass spectrometry binding partner analysis revealed that that ARL13B interacts with the purine biosynthetic enzyme inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). Further, radioisotope tracing revealed that this interaction functions as a negative regulator for purine salvaging. Inhibition of the ARL13B-IMPDH2 interaction enhances temozolomide-induced DNA damage by forcing glioblastoma cells to rely on the purine salvage pathway. Targeting the ARLI3B-IMPDH2 circuit can be achieved using the Food and Drug Administration-approved drug, mycophenolate mofetil, which can block IMPDH2 activity and enhance the therapeutic efficacy of temozolomide. Our results suggest and support clinical evaluation of MMF in combination with temozolomide treatment in glioma patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/metabolismo , Purinas/biossíntese , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Ácido Micofenólico/farmacologia , Temozolomida/farmacologia , Células Tumorais Cultivadas
12.
Proc Natl Acad Sci U S A ; 116(47): 23714-23723, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31712430

RESUMO

Tumor-associated myeloid cells (TAMCs) are key drivers of immunosuppression in the tumor microenvironment, which profoundly impedes the clinical response to immune-dependent and conventional therapeutic modalities. As a hallmark of glioblastoma (GBM), TAMCs are massively recruited to reach up to 50% of the brain tumor mass. Therefore, they have recently been recognized as an appealing therapeutic target to blunt immunosuppression in GBM with the hope of maximizing the clinical outcome of antitumor therapies. Here we report a nano-immunotherapy approach capable of actively targeting TAMCs in vivo. As we found that programmed death-ligand 1 (PD-L1) is highly expressed on glioma-associated TAMCs, we rationally designed a lipid nanoparticle (LNP) formulation surface-functionalized with an anti-PD-L1 therapeutic antibody (αPD-L1). We demonstrated that this system (αPD-L1-LNP) enabled effective and specific delivery of therapeutic payload to TAMCs. Specifically, encapsulation of dinaciclib, a cyclin-dependent kinase inhibitor, into PD-L1-targeted LNPs led to a robust depletion of TAMCs and an attenuation of their immunosuppressive functions. Importantly, the delivery efficiency of PD-L1-targeted LNPs was robustly enhanced in the context of radiation therapy (RT) owing to the RT-induced up-regulation of PD-L1 on glioma-infiltrating TAMCs. Accordingly, RT combined with our nano-immunotherapy led to dramatically extended survival of mice in 2 syngeneic glioma models, GL261 and CT2A. The high targeting efficiency of αPD-L1-LNP to human TAMCs from GBM patients further validated the clinical relevance. Thus, this study establishes a therapeutic approach with immense potential to improve the clinical response in the treatment of GBM and warrants a rapid translation into clinical practice.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células Mieloides/patologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Óxidos N-Cíclicos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Indolizinas , Camundongos , Células Mieloides/efeitos dos fármacos , Células Mieloides/efeitos da radiação , Nanopartículas , Compostos de Piridínio/administração & dosagem , Compostos de Piridínio/uso terapêutico , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Lancet Oncol ; 22(8): 1103-1114, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214495

RESUMO

BACKGROUND: Malignant glioma is the most common and lethal primary brain tumour, with dismal survival rates and no effective treatment. We examined the safety and activity of NSC-CRAd-S-pk7, an engineered oncolytic adenovirus delivered by neural stem cells (NSCs), in patients with newly diagnosed high-grade glioma. METHODS: This was a first-in-human, open-label, phase 1, dose-escalation trial done to determine the maximal tolerated dose of NSC-CRAd-S-pk7, following a 3 + 3 design. Patients with newly diagnosed, histologically confirmed, high-grade gliomas (WHO grade III or IV) were recruited. After neurosurgical resection, NSC-CRAd-S-pk7 was injected into the walls of the resection cavity. The first patient cohort received a dose starting at 6·25 × 1010 viral particles administered by 5·00 × 107 NSCs, the second cohort a dose of 1·25 × 1011 viral particles administered by 1·00 × 108 NSCs, and the third cohort a dose of 1·875 × 1011 viral particles administered by 1·50 × 108 NSCs. No further dose escalation was planned. Within 10-14 days, treatment with temozolomide and radiotherapy was initiated. Primary endpoints were safety and toxicity profile and the maximum tolerated dose for a future phase 2 trial. All analyses were done in all patients who were included in the trial and received the study treatment and were not excluded from the study. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT03072134. FINDINGS: Between April 24, 2017, and Nov 13, 2019, 12 patients with newly diagnosed, malignant gliomas were recruited and included in the safety analysis. Histopathological evaluation identified 11 (92%) of 12 patients with glioblastoma and one (8%) of 12 patients with anaplastic astrocytoma. The median follow-up was 18 months (IQR 14-22). One patient receiving 1·50 × 108 NSCs loading 1·875 × 1011 viral particles developed viral meningitis (grade 3) due to the inadvertent injection of NSC-CRAd-S-pk7 into the lateral ventricle. Otherwise, treatment was safe as no formal dose-limiting toxicity was reached, so 1·50 × 108 NSCs loading 1·875 × 1011 viral particles was recommended as a phase 2 trial dose. There were no treatment-related deaths. The median progression-free survival was 9·1 months (95% CI 8·5-not reached) and median overall survival was 18·4 months (15·7-not reached). INTERPRETATION: NSC-CRAd-S-pk7 treatment was feasible and safe. Our immunological and histopathological findings support continued investigation of NSC-CRAd-S-pk7 in a phase 2/3 clinical trial. FUNDING: US National Institutes of Health.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Células-Tronco Neurais/transplante , Terapia Viral Oncolítica/métodos , Adenoviridae , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vírus Oncolíticos
14.
Small ; 17(49): e2103600, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643042

RESUMO

Functional nanomaterials such as iron oxide nanoparticles have been extensively explored for the diagnosis and treatment of central nervous system diseases. However, an insufficient understanding of the comprehensive nanomaterial-biological interactions in the brain hinders the nanomaterials from meeting the medical requirements for translational research. Here, FDA-approved ferumoxytol, an iron oxide nanoparticle, is chosen as the model nanomaterial for a systematic study of the dynamic interactions between ferumoxytol and immune cells, including microglia and macrophages, in the brain tumors. Strikingly, up to 90% of intratumorally injected ferumoxytol nanoparticles are recognized and phagocytized by tumor-associated microglia and macrophages. The dynamic trafficking progress of ferumoxytol in microglia and macrophages, including scavenger receptor-mediated endocytosis, lysosomal internalization, and extracellular vesicle-dominated excretion, is further studied. Importantly, the results demonstrate that extracellular vesicle-encapsulated nanoparticles could be gradually eliminated from the brain along with cerebrospinal fluid circulation over 21 days. Moreover, ferumoxytol exhibits no obvious long-term neurological toxicity after its injection. The study suggests that the dynamic biointeractions of nanoparticles with immune cells in the brain exert a key rate-limiting impact on the efficiency of targeting tumor cells and their in vivo fate and thus provide a deeper understanding of the nanomaterials in the brain for clinical applications.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Encéfalo , Óxido Ferroso-Férrico , Humanos , Macrófagos , Imageamento por Ressonância Magnética
15.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466472

RESUMO

A viral infection that involves virus invasion, protein synthesis, and virion assembly is typically accompanied by sharp fluctuations in the intracellular levels of metabolites. Under certain conditions, dramatic metabolic shifts can result in various types of cell death. Here, we review different types of adenovirus-induced cell death associated with changes in metabolic profiles of the infected cells. As evidenced by experimental data, in most cases changes in the metabolome precede cell death rather than represent its consequence. In our previous study, the induction of autophagic cell death was observed following adenovirus-mediated lactate production, acetyl-CoA accumulation, and ATP release, while apoptosis was demonstrated to be modulated by alterations in acetate and asparagine metabolism. On the other hand, adenovirus-induced ROS production and ATP depletion were demonstrated to play a significant role in the process of necrotic cell death. Interestingly, the accumulation of ceramide compounds was found to contribute to the induction of all the three types of cell death mentioned above. Eventually, the characterization of metabolite analysis could help in uncovering the molecular mechanism of adenovirus-mediated cell death induction and contribute to the development of efficacious oncolytic adenoviral vectors.


Assuntos
Adenoviridae/genética , Adenoviridae/fisiologia , Morte Celular/genética , Morte Celular/fisiologia , Metaboloma/genética , Metaboloma/fisiologia , Apoptose/genética , Apoptose/fisiologia , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Humanos
16.
J Neurosci ; 39(11): 1982-1993, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30651332

RESUMO

Glioblastoma (GBM) is one of the most aggressive and lethal tumor types. Evidence continues to accrue indicating that the complex relationship between GBM and the brain microenvironment contributes to this malignant phenotype. However, the interaction between GBM and neurotransmitters, signaling molecules involved in neuronal communication, remains incompletely understood. Here we examined, using human patient-derived xenograft lines, how the monoamine dopamine influences GBM cells. We demonstrate that GBM cells express dopamine receptor 2 (DRD2), with elevated expression in the glioma-initiating cell (GIC) population. Stimulation of DRD2 caused a neuron-like hyperpolarization exclusively in GICs. In addition, long-term activation of DRD2 heightened the sphere-forming capacity of GBM cells, as well as tumor engraftment efficiency in both male and female mice. Mechanistic investigation revealed that DRD2 signaling activates the hypoxia response and functionally alters metabolism. Finally, we found that GBM cells synthesize and secrete dopamine themselves, suggesting a potential autocrine mechanism. These results identify dopamine signaling as a potential therapeutic target in GBM and further highlight neurotransmitters as a key feature of the pro-tumor microenvironment.SIGNIFICANCE STATEMENT This work offers critical insight into the role of the neurotransmitter dopamine in the progression of GBM. We show that dopamine induces specific changes in the state of tumor cells, augmenting their growth and shifting them to a more stem-cell like state. Further, our data illustrate that dopamine can alter the metabolic behavior of GBM cells, increasing glycolysis. Finally, this work demonstrates that GBM cells, including tumor samples from patients, can synthesize and secrete dopamine, suggesting an autocrine signaling process underlying these results. These results describe a novel connection between neurotransmitters and brain cancer, further highlighting the critical influence of the brain milieu on GBM.


Assuntos
Glioblastoma/metabolismo , Receptores de Dopamina D2/metabolismo , Transcriptoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Dopamina/biossíntese , Epigênese Genética , Feminino , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Transdução de Sinais
17.
Int J Cancer ; 147(7): 1939-1952, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32086955

RESUMO

Combination therapy has become a cornerstone in cancer treatment to potentiate therapeutic effectiveness and overcome drug resistance and metastasis. In this work, we explore combination trials in breast cancer brain metastasis (BCBM), highlighting deficiencies in trial design and underlining promising combination strategies. On October 31, 2019, we examined ClinicalTrials.gov for interventional and therapeutic clinical trials involving combination therapy for BCBM, without limiting for date or location. Information on trial characteristics was collected. Combination therapies used in trials were analyzed and explored in line with evidence from the medical literature. Sixty-five combination therapy trials were selected (n = 65), constituting less than 0.7% of all breast cancer trials. Most trials (62%) combined ≥2 chemotherapeutic agents. Chemotherapy with radiation was main-stay in 23% of trials. Trastuzumab was mostly used in combination (31%), followed by lapatinib (20%) and capecitabine (15%). Common strategies involved combining tyrosine kinase inhibitors with thymidylate synthase inhibitors (6 trials), dual HER-dimerization inhibitors (3 trials), microtubule inhibitors and tyrosine kinase inhibitors (3 trials), and HER-dimerization inhibitors and tyrosine kinase inhibitors (3 trials). The combination of tucatinib and capecitabine yielded the highest objective response rate (83%) in early phase trials. The triple combination of trastuzumab, tucatinib and capecitabine lowered the risk of disease progression or death by 52% in patients with HER2-positive BCBM. Combining therapeutic agents based on biological mechanisms is necessary to increase the effectiveness of available anti-cancer regimens. Significant survival benefit has yet to be achieved in future combination therapy trials. Enhancing drug delivery through blood-brain barrier permeable agents may potentiate the overall therapeutic outcomes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Barreira Hematoencefálica , Ensaios Clínicos como Assunto , Sinergismo Farmacológico , Feminino , Humanos , Análise de Sobrevida , Resultado do Tratamento
18.
Int J Cancer ; 146(8): 2218-2228, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443114

RESUMO

Glioblastoma (GBM) is one of the most aggressive primary brain tumors with frequent recurrences following the standard methods of treatment-temozolomide (TMZ), ionizing radiation and surgical resection. The objective of our study was to investigate GBM resistance mediated via MMP14 (matrix metalloproteinase 14). We used multiple PDX GBM models and established glioma cell lines to characterize expression and subcellular localization of MMP14 after TMZ treatment. We performed a Kiloplex ELISA-based array to evaluate changes in cellular proteins induced by MMP14 expression and translocation. Lastly, we conducted functional and mechanistic studies to elucidate the role of DLL4 (delta-like canonical notch ligand 4) in regulation of glioma stemness, particularly in the context of its relationship to MMP14. We detected that TMZ treatment promotes nuclear translocation of MMP14 followed by extracellular release of DLL4. DLL4 in turn stimulates cleavage of Notch3, its nuclear translocation and induction of sphering capacity and stemness.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptor Notch3/metabolismo , Temozolomida/farmacologia , Animais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Metaloproteinase 14 da Matriz/biossíntese , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Immunol Immunother ; 69(1): 81-94, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31844909

RESUMO

Amino acid deprivation is a strategy that malignancies utilize to blunt anti-tumor T-cell immune responses. It has been proposed that amino acid insufficiency in T-cells is detected by GCN2 kinase, which through phosphorylation of EIF2α, shuts down global protein synthesis leading to T-cell arrest. The role of this amino acid stress sensor in the context of malignant brain tumors has not yet been studied, and may elucidate important insights into the mechanisms of T-cell survival in this harsh environment. Using animal models of glioblastoma and animals with deficiency in GCN2, we explored the importance of this pathway in T-cell function within brain tumors. Our results show that GCN2 deficiency limited CD8+ T-cell activation and expression of cytotoxic markers in two separate murine models of glioblastoma in vivo. Importantly, adoptive transfer of antigen-specific T-cells from GCN2 KO mice did not control tumor burden as well as wild-type CD8+ T-cells. Our in vitro and in vivo data demonstrated that reduction in amino acid availability caused GCN2 deficient CD8+ T-cells to become rapidly necrotic. Mechanistically, reduced CD8+ T-cell activation and necrosis was due to a disruption in TCR signaling, as we observed reductions in PKCθ and phoshpo-PKCθ on CD8+ T-cells from GCN2 KO mice in the absence of tryptophan. Validating these observations, treatment of wild-type CD8+ T-cells with a downstream inhibitor of GCN2 activation also triggered necrosis of CD8+ T-cells in the absence of tryptophan. In conclusion, our data demonstrate the vital importance of intact GCN2 signaling on CD8+ T-cell function and survival in glioblastoma.


Assuntos
Neoplasias Encefálicas/imunologia , Linfócitos T CD8-Positivos/imunologia , Glioblastoma/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Evasão Tumoral/imunologia , Transferência Adotiva , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Linhagem Celular Tumoral/transplante , Sobrevivência Celular/imunologia , Modelos Animais de Doenças , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Ativação Linfocitária , Camundongos , Camundongos Knockout , Necrose/genética , Necrose/imunologia , Fosforilação/imunologia , Biossíntese de Proteínas/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia
20.
Small ; 16(3): e1905424, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31867877

RESUMO

In cells, mechanical forces play a key role in impacting cell behaviors, including adhesion, differentiation, migration, and death. Herein, a 20 nm mitochondria-targeted zinc-doped iron oxide nanocube is designed as a nanospinner to exert mechanical forces under a rotating magnetic field (RMF) at 15 Hz and 40 mT to fight against cancer. The nanospinners can efficiently target the mitochondria of cancer cells. By means of the RMF, the nanocubes assemble in alignment with the external field and produce a localized mechanical force to impair the cancer cells. Both in vitro and in vivo studies show that the nanospinners can damage the cancer cells and reduce the brain tumor growth rate after the application of the RMF. This nanoplatform provides an effective magnetomechanical approach to treat deep-seated tumors in a spatiotemporal fashion.


Assuntos
Magnetismo , Mitocôndrias/metabolismo , Nanotecnologia , Neoplasias/terapia , Linhagem Celular Tumoral , Linhagem da Célula , Humanos , Fenômenos Mecânicos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA