Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Arch Biochem Biophys ; 601: 113-20, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27036851

RESUMO

We investigated the effect of 7 Hypertrophic Cardiomyopathy (HCM)-causing mutations in troponin T (TnT) on troponin function in thin filaments reconstituted with actin and human cardiac tropomyosin. We used the quantitative in vitro motility assay to study Ca(2+)-regulation of unloaded movement and its modulation by troponin I phosphorylation. Troponin from a patient with the K280N TnT mutation showed no difference in Ca(2+)-sensitivity when compared with donor heart troponin and the Ca(2+)-sensitivity was also independent of the troponin I phosphorylation level (uncoupled). The recombinant K280N TnT mutation increased Ca(2+)-sensitivity 1.7-fold and was also uncoupled. The R92Q TnT mutation in troponin from transgenic mouse increased Ca(2+)-sensitivity and was also completely uncoupled. Five TnT mutations (Δ14, Δ28 + 7, ΔE160, S179F and K273E) studied in recombinant troponin increased Ca(2+)-sensitivity and were all fully uncoupled. Thus, for HCM-causing mutations in TnT, Ca(2+)-sensitisation together with uncoupling in vitro is the usual response and both factors may contribute to the HCM phenotype. We also found that Epigallocatechin-3-gallate (EGCG) can restore coupling to all uncoupled HCM-causing TnT mutations. In fact the combination of Ca(2+)-desensitisation and re-coupling due to EGCG completely reverses both the abnormalities found in troponin with a TnT HCM mutation suggesting it may have therapeutic potential.


Assuntos
Cálcio/química , Cardiomiopatia Hipertrófica/genética , Mutação , Troponina I/química , Troponina T/genética , Citoesqueleto de Actina/metabolismo , Animais , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Catequina/análogos & derivados , Catequina/química , Relação Dose-Resposta a Droga , Coração/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Fosforilação , Proteínas Recombinantes/química
2.
J Biol Chem ; 288(7): 4891-8, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23271734

RESUMO

We studied O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ~90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p < 0.05). ZASP is only 22% of all O-GlcNAcylated proteins in mouse heart myofibrils.


Assuntos
Acetilglucosamina/química , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Regulação da Expressão Gênica , Coração/fisiologia , Proteínas com Domínio LIM/fisiologia , Miofibrilas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Técnica Indireta de Fluorescência para Anticorpo/métodos , Humanos , Proteínas com Domínio LIM/metabolismo , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Peptídeos/química , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
J Biol Chem ; 288(19): 13446-54, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23530050

RESUMO

Understanding how cardiac myosin regulatory light chain (RLC) phosphorylation alters cardiac muscle mechanics is important because it is often altered in cardiac disease. The effect this protein phosphorylation has on muscle mechanics during a physiological range of shortening velocities, during which the heart generates power and performs work, has not been addressed. We have expressed and phosphorylated recombinant Rattus norvegicus left ventricular RLC. In vitro we have phosphorylated these recombinant species with cardiac myosin light chain kinase and zipper-interacting protein kinase. We compare rat permeabilized cardiac trabeculae, which have undergone exchange with differently phosphorylated RLC species. We were able to enrich trabecular RLC phosphorylation by 40% compared with controls and, in a separate series, lower RLC phosphorylation to 60% of control values. Compared with the trabeculae with a low level of RLC phosphorylation, RLC phosphorylation enrichment increased isometric force by more than 3-fold and peak power output by more than 7-fold and approximately doubled both maximum shortening speed and the shortening velocity that generated peak power. We augmented these measurements by observing increased RLC phosphorylation of human and rat HF samples from endocardial left ventricular homogenate. These results demonstrate the importance of increased RLC phosphorylation in the up-regulation of myocardial performance and suggest that reduced RLC phosphorylation is a key aspect of impaired contractile function in the diseased myocardium.


Assuntos
Contração Miocárdica , Infarto do Miocárdio/metabolismo , Cadeias Leves de Miosina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/patologia , Humanos , Masculino , Infarto do Miocárdio/fisiopatologia , Miofibrilas/metabolismo , Cadeias Leves de Miosina/química , Fosforilação , Ratos , Ratos Sprague-Dawley , Sus scrofa
4.
J Biol Chem ; 286(31): 27582-93, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21622575

RESUMO

We generated a transgenic mouse model expressing the apical hypertrophic cardiomyopathy-causing mutation ACTC E99K at 50% of total heart actin and compared it with actin from patients carrying the same mutation. The actin mutation caused a higher Ca(2+) sensitivity in reconstituted thin filaments measured by in vitro motility assay (2.3-fold for mice and 1.3-fold for humans) and in skinned papillary muscle. The mutation also abolished the change in Ca(2+) sensitivity normally linked to troponin I phosphorylation. MyBP-C and troponin I phosphorylation levels were the same as controls in transgenic mice and human carrier heart samples. ACTC E99K mice exhibited a high death rate between 28 and 45 days (48% females and 22% males). At 21 weeks, the hearts of the male survivors had enlarged atria, increased interstitial fibrosis, and sarcomere disarray. MRI showed hypertrophy, predominantly at the apex of the heart. End-diastolic volume and end-diastolic pressure were increased, and relaxation rates were reduced compared with nontransgenic littermates. End-systolic pressures and volumes were unaltered. ECG abnormalities were present, and the contractile response to ß-adrenergic stimulation was much reduced. Older mice (29-week-old females and 38-week-old males) developed dilated cardiomyopathy with increased end-systolic volume and continuing increased end-diastolic pressure and slower contraction and relaxation rates. ECG showed atrial flutter and frequent atrial ectopic beats at rest in some ACTC E99K mice. We propose that the ACTC E99K mutation causes higher myofibrillar Ca(2+) sensitivity that is responsible for the sudden cardiac death, apical hypertrophy, and subsequent development of heart failure in humans and mice.


Assuntos
Actinas/genética , Cardiomegalia/genética , Mutação , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
5.
J Mol Cell Cardiol ; 49(3): 380-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20600154

RESUMO

We have investigated a transgenic mouse model of inherited dilated cardiomyopathy that stably expresses the ACTC E361G mutation at around 50% of total actin in the heart. F-actin isolated from ACTC E361G mouse hearts was incorporated into thin filaments with native human tropomyosin and troponin and compared with NTG mouse actin by in vitro motility assay. There was no significant difference in sliding speed, fraction of filaments motile or Ca(2+)-sensitivity (ratio EC(50) E361G/NTG=0.95+/-0.08). The Ca(2+)-sensitivity of force in skinned trabeculae from ACTC E361G mice was slightly higher than NTG (EC(50) E361G/NTG=0.78+/-0.04). The molecular phenotype was revealed when troponin was dephosphorylated; Ca(2+)-sensitivity of E361G-containing thin filaments was now lower than NTG (EC(50) E361G(dPTn)/NTG(dPTn)=2.15+/-0.09). We demonstrated that this was due to uncoupling of Ca(2+)-sensitivity from troponin I phosphorylation by comparing Ca(2+)-sensitivity of phosphorylated and dephosphorylated thin filaments. For NTG actin-containing thin filaments EC(50) native/dPTn=3.0+/-0.3 but for E361G-containing thin filaments EC(50) native/dPTn=1.04+/-0.07.We studied contractility in isolated myocytes and found no significant differences under basal conditions. We measured cardiac performance by cine-MRI, echocardiography and with a conductance catheter over a period of 4 to 18 months and found minimal systematic differences between NTG and ACTC E361G mice under basal conditions. However, the increase in septal thickening, ejection fraction, heart rate and cardiac output following dobutamine treatment was significantly less in ACTC E361G mice compared with NTG. We propose that the ACTC E361G mutation uncouples myofilament Ca(2+)-sensitivity from Troponin I phosphorylation and blunts the response to adrenergic stimulation, leading to a reduced cardiac reserve with consequent contractile dysfunction under stress, leading to dilated cardiomyopathy.


Assuntos
Actinas/fisiologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Coração/fisiopatologia , Animais , Cardiomiopatia Dilatada/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Fenótipo , Tropomiosina/metabolismo , Troponina/metabolismo
6.
J Proteome Res ; 9(10): 5153-63, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20722389

RESUMO

Several lines of evidence support an autoimmune basis for alopecia areata (AA), a common putative autoimmune hair loss disorder. However, definitive support is lacking largely because the identity of hair follicle (HF) autoantigen(s) involved in its pathogenesis remains unknown. Here, we isolated AA-reactive HF-specific antigens from normal human scalp anagen HF extracts by immunoprecipitation using serum antibodies from 10 AA patients. Samples were analyzed by LC-MALDI-TOF/TOF mass spectrometry, which indicated strong reactivity to the hair growth phase-specific structural protein trichohyalin in all AA sera. Keratin 16 (K16) was also identified as another potential AA-relevant target HF antigen. Double immunofluorescence studies using AA (and control sera) together with a monoclonal antibody to trichohyalin revealed that AA sera contained immunoreactivity that colocalized with trichohyalin in the growth phase-specific inner root sheath of HF. Furthermore, a partial colocalization of AA serum reactivity with anti-K16 antibody was observed in the outer root sheath of the HF. In summary, this study supports the involvement of an immune response to anagen-specific HFs antigens in AA and specifically suggests that an immune response to trichohyalin and K16 may have a role in the pathogenesis of the enigmatic disorder.


Assuntos
Alopecia em Áreas/imunologia , Autoantígenos/análise , Precursores de Proteínas/análise , Adulto , Alopecia em Áreas/sangue , Autoantígenos/sangue , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Folículo Piloso/imunologia , Folículo Piloso/patologia , Humanos , Proteínas de Filamentos Intermediários , Queratina-16/análise , Queratina-16/sangue , Masculino , Precursores de Proteínas/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
J Gen Physiol ; 151(1): 18-29, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30578328

RESUMO

Hypertrophic cardiomyopathy (HCM) is a genetic form of left ventricular hypertrophy, primarily caused by mutations in sarcomere proteins. The cardiac remodeling that occurs as the disease develops can mask the pathogenic impact of the mutation. Here, to discriminate between mutation-induced and disease-related changes in myofilament function, we investigate the pathogenic mechanisms underlying HCM in a patient carrying a homozygous mutation (K280N) in the cardiac troponin T gene (TNNT2), which results in 100% mutant cardiac troponin T. We examine sarcomere mechanics and energetics in K280N-isolated myofibrils and demembranated muscle strips, before and after replacement of the endogenous troponin. We also compare these data to those of control preparations from donor hearts, aortic stenosis patients (LVHao), and HCM patients negative for sarcomeric protein mutations (HCMsmn). The rate constant of tension generation following maximal Ca2+ activation (k ACT) and the rate constant of isometric relaxation (slow k REL) are markedly faster in K280N myofibrils than in all control groups. Simultaneous measurements of maximal isometric ATPase activity and Ca2+-activated tension in demembranated muscle strips also demonstrate that the energy cost of tension generation is higher in the K280N than in all controls. Replacement of mutant protein by exchange with wild-type troponin in the K280N preparations reduces k ACT, slow k REL, and tension cost close to control values. In donor myofibrils and HCMsmn demembranated strips, replacement of endogenous troponin with troponin containing the K280N mutant increases k ACT, slow k REL, and tension cost. The K280N TNNT2 mutation directly alters the apparent cross-bridge kinetics and impairs sarcomere energetics. This result supports the hypothesis that inefficient ATP utilization by myofilaments plays a central role in the pathogenesis of the disease.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Mutação/genética , Troponina T/genética , Adulto , Cálcio/metabolismo , Humanos , Cinética , Masculino , Relaxamento Muscular/genética , Miofibrilas/genética , Sarcômeros/genética
8.
Cardiovasc Res ; 99(1): 65-73, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23539503

RESUMO

AIMS: The pure form of familial dilated cardiomyopathy (DCM) is mainly caused by mutations in genes encoding sarcomeric proteins. Previous measurements using recombinant proteins suggested that DCM mutations in thin filament proteins decreased myofibrillar Ca(2+) sensitivity, but exceptions were reported. We re-investigated the molecular mechanism of familial DCM using native proteins. METHODS AND RESULTS: We used the quantitative in vitro motility assay and native troponin and tropomyosin to study DCM mutations in troponin I, troponin T, and α-tropomyosin. Four mutations reduced myofilament Ca(2+) sensitivity, but one mutation (TPM1 E54K) did not alter Ca(2+) sensitivity and another (TPM1 D230N) increased Ca(2+) sensitivity. In thin filaments from normal human and mouse heart, protein kinase A (PKA) phosphorylation of troponin I caused a two- to three-fold decrease in myofibrillar Ca(2+) sensitivity. However, Ca(2+) sensitivity did not change with the level of troponin I phosphorylation in any of the DCM-mutant containing thin filaments (E40K, E54K, and D230N in α-tropomyosin; R141W and ΔK210 in cardiac troponin T; K36Q in cardiac troponin I; G159D in cardiac troponin C, and E361G in cardiac α-actin). This 'uncoupling' was observed with native mutant protein from human and mouse heart and with recombinant mutant protein expressed in baculovirus/Sf9 systems. Uncoupling was independent of the fraction of mutated protein present above 0.55. CONCLUSION: We conclude that DCM-causing mutations in thin filament proteins abolish the relationship between myofilament Ca(2+) sensitivity and troponin I phosphorylation by PKA. We propose that this blunts the response to ß-adrenergic stimulation and could be the cause of DCM in the long term.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Mutação , Miocárdio/metabolismo , Miofibrilas/metabolismo , Troponina I/metabolismo , Animais , Cardiomiopatia Dilatada/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Genótipo , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Fenótipo , Fosforilação , Conformação Proteica , Tropomiosina/genética , Tropomiosina/metabolismo , Troponina I/química , Troponina I/genética , Troponina T/genética , Troponina T/metabolismo
9.
Cardiovasc Res ; 97(3): 500-8, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23097574

RESUMO

AIMS: We studied the relationship between myofilament Ca(2+) sensitivity and troponin I (TnI) phosphorylation by protein kinase A at serines 22/23 in human heart troponin isolated from donor hearts and from myectomy samples from patients with hypertrophic obstructive cardiomyopathy (HOCM). METHODS AND RESULTS: We used a quantitative in vitro motility assay. With donor heart troponin, Ca(2+) sensitivity is two- to three-fold higher when TnI is unphosphorylated. In the myectomy samples from patients with HOCM, the mean level of TnI phosphorylation was low: 0.38 ± 0.19 mol Pi/mol TnI compared with 1.60 ± 0.19 mol Pi/mol TnI in donor hearts, but no difference in myofilament Ca(2+) sensitivity was observed. Thus, troponin regulation of thin filament Ca(2+) sensitivity is abnormal in HOCM hearts. HOCM troponin (0.29 mol Pi/mol TnI) was treated with protein kinase A to increase the level of phosphorylation to 1.56 mol Pi/mol TnI. No difference in EC(50) was found in thin filaments containing high and low TnI phosphorylation levels. This indicates that Ca(2+) sensitivity is uncoupled from TnI phosphorylation in HOCM heart troponin. Coupling could be restored by replacing endogenous troponin T (TnT) with the recombinant TnT T3 isoform. No difference in Ca(2+) sensitivity was observed if TnI was exchanged into HOCM heart troponin or if TnT was exchanged into the highly phosphorylated donor heart troponin. Comparison of donor and HOCM heart troponin by mass spectrometry and with adduct-specific antibodies did not show any differences in TnT isoform expression, phosphorylation or any post-translational modifications. CONCLUSION: An abnormality in TnT is responsible for uncoupling myofibrillar Ca(2+) sensitivity from TnI phosphorylation in the septum of HOCM patients.


Assuntos
Cálcio/farmacologia , Cardiomiopatia Hipertrófica/metabolismo , Miocárdio/metabolismo , Miofibrilas/efeitos dos fármacos , Troponina I/metabolismo , Troponina T/metabolismo , Adulto , Biópsia , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/cirurgia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Miocárdio/patologia , Fosforilação , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA