Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 16(11): 1124-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26414766

RESUMO

Subsets of innate lymphoid cells (ILCs) reside in the mucosa and regulate immune responses to external pathogens. While ILCs can be phenotypically classified into ILC1, ILC2 and ILC3 subsets, the transcriptional control of commitment to each ILC lineage is incompletely understood. Here we report that the transcription factor Runx3 was essential for the normal development of ILC1 and ILC3 cells but not of ILC2 cells. Runx3 controlled the survival of ILC1 cells but not of ILC3 cells. Runx3 was required for expression of the transcription factor RORγt and its downstream target, the transcription factor AHR, in ILC3 cells. The absence of Runx3 in ILCs exacerbated infection with Citrobacter rodentium. Therefore, our data establish Runx3 as a key transcription factor in the lineage-specific differentiation of ILC1 and ILC3 cells.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Animais , Antígenos Ly/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Citrobacter rodentium/imunologia , Citrobacter rodentium/patogenicidade , Subunidade alfa 3 de Fator de Ligação ao Core/deficiência , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/deficiência , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Infecções por Enterobacteriaceae/etiologia , Infecções por Enterobacteriaceae/imunologia , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Subpopulações de Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33479171

RESUMO

Runt domain-related (Runx) transcription factors are essential for early T cell development in mice from uncommitted to committed stages. Single and double Runx knockouts via Cas9 show that target genes responding to Runx activity are not solely controlled by the dominant factor, Runx1. Instead, Runx1 and Runx3 are coexpressed in single cells; bind to highly overlapping genomic sites; and have redundant, collaborative functions regulating genes pivotal for T cell development. Despite stable combined expression levels across pro-T cell development, Runx1 and Runx3 preferentially activate and repress genes that change expression dynamically during lineage commitment, mostly activating T-lineage genes and repressing multipotent progenitor genes. Furthermore, most Runx target genes are sensitive to Runx perturbation only at one stage and often respond to Runx more for expression transitions than for maintenance. Contributing to this highly stage-dependent gene regulation function, Runx1 and Runx3 extensively shift their binding sites during commitment. Functionally distinct Runx occupancy sites associated with stage-specific activation or repression are also distinguished by different patterns of partner factor cobinding. Finally, Runx occupancies change coordinately at numerous clustered sites around positively or negatively regulated targets during commitment. This multisite binding behavior may contribute to a developmental "ratchet" mechanism making commitment irreversible.


Assuntos
Linhagem da Célula/imunologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Células Precursoras de Linfócitos T/imunologia , Linfócitos T/imunologia , Transcriptoma , Animais , Diferenciação Celular , Linhagem da Célula/genética , Subunidade alfa 2 de Fator de Ligação ao Core/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Masculino , Camundongos , Células Precursoras de Linfócitos T/citologia , Cultura Primária de Células , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Linfócitos T/classificação , Linfócitos T/citologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia
3.
Genes Dev ; 30(23): 2607-2622, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007784

RESUMO

The Runx3 transcription factor is essential for development and diversification of the dorsal root ganglia (DRGs) TrkC sensory neurons. In Runx3-deficient mice, developing TrkC neurons fail to extend central and peripheral afferents, leading to cell death and disruption of the stretch reflex circuit, resulting in severe limb ataxia. Despite its central role, the mechanisms underlying the spatiotemporal expression specificities of Runx3 in TrkC neurons were largely unknown. Here we first defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Using transgenic mice expressing BAC reporters spanning the Runx3 locus, we discovered three REs-dubbed R1, R2, and R3-that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. Deletion of single or multiple elements either in the BAC transgenics or by CRISPR/Cas9-mediated endogenous ablation established the REs' ability to promote and/or repress Runx3 expression in developing sensory neurons. Our analysis reveals that an intricate combinatorial interplay among the three REs governs Runx3 expression in distinct subtypes of TrkC neurons while concomitantly extinguishing its expression in non-TrkC neurons. These findings provide insights into the mechanism regulating cell type-specific expression and subtype diversification of TrkC neurons in developing DRGs.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Gânglios Espinais/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/metabolismo , Elementos Reguladores de Transcrição/genética , Animais , Ataxia/genética , Sítios de Ligação , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos , Gânglios Espinais/citologia , Deleção de Genes , Locomoção/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/metabolismo
4.
Adv Exp Med Biol ; 962: 369-393, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299669

RESUMO

In this chapter we summarize the pros and cons of the notion that Runx3 is a major tumor suppressor gene (TSG). Inactivation of TSGs in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago it was suggested that RUNX3 is involved in gastric cancer development, a postulate extended later to other epithelial cancers portraying RUNX3 as a major TSG. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. In contrast, RUNX3 is overexpressed in a significant fraction of tumor cells in various human epithelial cancers and its overexpression in pancreatic cancer cells promotes their migration, anchorage-independent growth and metastatic potential. Moreover, recent high-throughput quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models have unequivocally demonstrated that RUNX3 is not a bona fide cell-autonomous TSG. Importantly, accumulating data demonstrated that RUNX3 functions in control of immunity and inflammation, thereby indirectly influencing epithelial tumor development.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Imunidade/genética , Inflamação/genética , Neoplasias/genética , Neoplasias/patologia , Animais , Humanos , Inflamação/patologia
5.
Biochim Biophys Acta ; 1855(2): 131-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25641675

RESUMO

Inactivation of tumor suppressor genes (TSG) in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago claims arose that the RUNX3 member of the RUNX transcription factor family is a major TSG inactivated in gastric cancer, a postulate extended later to other cancers. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. Here we critically re-appraise this paradigm in light of recent high-throughput, quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models. Collectively, these studies unequivocally demonstrate that RUNX3 is not a bona fide cell-autonomous TSG. Accordingly, RUNX3 is not recognized as a TSG and is not included among the 2000 cancer genes listed in the "Cancer Gene Census" or "Network for Cancer Genes" repositories. In contrast, RUNX3 does play important functions in immunity and inflammation and may thereby indirectly influence epithelial tumor development.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Imunidade Inata/genética , Inflamação/genética , Neoplasias/genética , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Genes Supressores de Tumor , Humanos , Inflamação/imunologia , Inflamação/patologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/patologia
6.
EMBO J ; 31(18): 3718-29, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22903063

RESUMO

The formation of functional connectivity in the nervous system is governed by axon guidance that instructs nerve growth and branching during development, implying a similarity between neuronal subtypes in terms of nerve extension. We demonstrate the molecular mechanism of another layer of complexity in vertebrates by defining a transcriptional program underlying growth differences between positionally different neurons. The rate of axon extension of the early subset of embryonic dorsal root ganglion sensory neurons is encoded in neurons at different axial levels. This code is determined by a segmental pattern of axial levels of Runx family transcription factor Runx3. Runx3 in turn determines transcription levels of genes encoding cytoskeletal proteins involved in axon extension, including Rock1 and Rock2 which have ongoing activities determining axon growth in early sensory neurons and blocking Rock activity reverses axon extension deficits of Runx3(-/-) neurons. Thus, Runx3 acts to regulate positional differences in axon extension properties apparently without affecting nerve guidance and branching, a principle that could be relevant to other parts of the nervous system.


Assuntos
Axônios/fisiologia , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Células Receptoras Sensoriais/fisiologia , Animais , Axônios/metabolismo , Proliferação de Células , Embrião de Galinha , Gânglios Espinais/embriologia , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Sistema Nervoso/embriologia , Neurônios/metabolismo , RNA/metabolismo , Fatores de Tempo
7.
Immunol Cell Biol ; 90(8): 827-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22370763

RESUMO

Runx transcription factor family proteins have essential roles during T-cell development by either activating or repressing target genes. For instance, lineage- and stage-specific expression of Cd4 and ThPOK is controlled by a transcriptional silencer embedded in each locus, whose activity requires bindings of Runx complexes. The evolutionarily conserved VWRPY penta-peptide sequences in Runx proteins have been shown to be responsible for repressive function as a platform to recruit Groucho/TLE transcriptional corepressors. However, it remains elusive whether requirement for the VWRPY motif differs among Runx target genes. By examining mice lacking VWRPY motifs in both Runx1 and Runx3 proteins, here, we show a full and partial derepression of Cd4 and ThPOK in CD8-linegae T cells, respectively. Thus, whereas Cd4 silencing completely depends on the VWRPY motif, both VWRPY-dependent and -independent mechanisms operate to repress ThPOK gene. These results indicate that Runx proteins utilize different modes to repress expression of different target genes.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/química , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/química , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antígenos CD4/genética , Antígenos CD4/metabolismo , Camundongos , Dados de Sequência Molecular , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(1): 238-43, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19114653

RESUMO

The transcription factor Runx1 is a key regulator of definitive hematopoiesis in the embryo and the adult. Lineage-specific expression of Runx1 involves transcription and post-transcription control through usage of alternative promoters and diverse 3'UTR isoforms, respectively. We identified and mapped microRNA (miR) binding sites on Runx1 3'UTR and show that miR-27a, miR-9, miR-18a, miR-30c, and miR-199a* bind and post-transcriptionally attenuate expression of Runx1. miR-27a impacts on both the shortest (0.15 kb) and longest (3.8 kb) 3'UTRs and, along with additional miRs, might contribute to translation attenuation of Runx1 mRNA in the myeloid cell line 416B. Whereas levels of Runx1 mRNA in 416B and the B cell line 70Z were similar, the protein levels were not. Large amounts of Runx1 protein were found in 70Z cells, whereas only minute amounts of Runx1 protein were made in 416B cells and overexpression of Runx1 in 416B induced terminal differentiation associated with megakaryocytic markers. Induction of megakaryocytic differentiation in K562 cells by 12-o-tetradecanoylphorbol-13-acetate markedly increased miR-27a expression, concomitantly with binding of Runx1 to miR-27a regulatory region. The data indicate that miR-27a plays a regulatory role in megakaryocytic differentiation by attenuating Runx1 expression, and that, during megakaryopoiesis, Runx1 and miR-27a are engaged in a feedback loop involving positive regulation of miR-27a expression by Runx1.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Regulação da Expressão Gênica/fisiologia , Megacariócitos/citologia , MicroRNAs/fisiologia , Trombopoese/genética , Diferenciação Celular , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Retroalimentação Fisiológica , Humanos , MicroRNAs/genética , Ligação Proteica , RNA Mensageiro/análise
9.
Blood Cells Mol Dis ; 45(2): 112-6, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20554226

RESUMO

Runx3 protein products that are translated from the distal (P1)- and proximal (P2)-promoter transcripts appear on Western blots as a 47-46kDa doublet corresponding to full-length proteins bearing the P1- and P2-N-termini respectively. An additional 44kDa protein band, the origin and nature of which was unclear, is also detected. Transfection of full-length Runx3 cDNA bearing the P2 N-terminus (P2-cDNA) into HEK293 cells resulted in expression of both 46 and 44kDa proteins. Sequence analysis of the P2-cDNA revealed an in-frame ATG 90bp downstream (+90ATG) of the proximal +1ATG. Insertion of an N-terminal HA-tag into P2-cDNA immediately downstream of the +1ATG produced HA-tagged 46kDa and untagged 44kDa proteins, consistent with the possibility that the latter was translated through initiation at the internal +90ATG site. Deleting or blocking the activity of the +1ATG, the natural cap-dependent translation initiation site in P2-cDNA, abrogated production of the 46kDa Runx3 protein while facilitating production of the 44kDa product. These findings supported the notion that Runx3 44kDa protein resulted from internal translation initiation at the +90ATG. Northern blot and RT-PCR analyses performed on RNA from P2-cDNA transfected cells showed a single transcript and product respectively, of the expected size, ruling out the possibility that the 44kDa protein was translated from transcripts originating at a cryptic promoter or produced by alternative splicing. Taken together, the data indicate that the 44kDa protein results from translation initiation at the internal ATG and that Runx3, like its family members Runx1 and Runx2, contains a mechanism for internal mRNA translation initiation.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Iniciação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas/genética , Isoformas de Proteínas/biossíntese , Animais , Western Blotting , Linhagem Celular , Códon de Iniciação , Cães , Camundongos , Análise de Sequência de DNA
10.
PLoS One ; 15(5): e0233044, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453801

RESUMO

Mice deficient in the transcription factor Runx3 develop a multitude of immune system defects, including early onset colitis. This paper demonstrates that Runx3 is expressed in colonic mononuclear phagocytes (MNP), including resident macrophages (RM) and dendritic cell subsets (cDC2). Runx3 deletion in MNP causes early onset colitis due to their impaired maturation. Mechanistically, the resulting MNP subset imbalance leads to up-regulation of pro-inflammatory genes as occurs in IL10R-deficient RM. In addition, RM and cDC2 display a marked decrease in expression of anti-inflammatory/TGF ß-regulated genes and ß-catenin signaling associated genes, respectively. MNP transcriptome and ChIP-seq data analysis suggest that a significant fraction of genes affected by Runx3 loss are direct Runx3 targets. Collectively, Runx3 imposes intestinal immune tolerance by regulating maturation of colonic anti-inflammatory MNP, befitting the identification of RUNX3 as a genome-wide associated risk gene for various immune-related diseases in humans, including gastrointestinal tract diseases such as Crohn's disease and celiac.


Assuntos
Colite/imunologia , Colo/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Sistema Fagocitário Mononuclear/imunologia , Animais , Diferenciação Celular , Colite/genética , Modelos Animais de Doenças , Humanos , Camundongos , Receptores de Interleucina-10/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , beta Catenina/metabolismo
11.
J Exp Med ; 217(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31653691

RESUMO

The zinc finger transcription factor, Bcl11b, is expressed in T cells and group 2 innate lymphoid cells (ILC2s) among hematopoietic cells. In early T-lineage cells, Bcl11b directly binds and represses the gene encoding the E protein antagonist, Id2, preventing pro-T cells from adopting innate-like fates. In contrast, ILC2s co-express both Bcl11b and Id2. To address this contradiction, we have directly compared Bcl11b action mechanisms in pro-T cells and ILC2s. We found that Bcl11b binding to regions across the genome shows distinct cell type-specific motif preferences. Bcl11b occupies functionally different sites in lineage-specific patterns and controls totally different sets of target genes in these cell types. In addition, Bcl11b bears cell type-specific post-translational modifications and organizes different cell type-specific protein complexes. However, both cell types use the same distal enhancer region to control timing of Bcl11b activation. Therefore, although pro-T cells and ILC2s both need Bcl11b for optimal development and function, Bcl11b works substantially differently in these two cell types.


Assuntos
Linhagem da Célula/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Proteínas Repressoras/imunologia , Linfócitos T/imunologia , Proteínas Supressoras de Tumor/imunologia , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional/imunologia
12.
Blood Cells Mol Dis ; 43(1): 1-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19233693

RESUMO

Runx3 is one of the three mammalian Runt domain transcription factors comprising the deeply conserved RUNX gene family. While the three proteins recognize the same DNA-motif, the functional overlaps are minor; each Runx has a distinct subset of biological functions. This lack of functional redundancy is the consequence of a tightly regulated spatio/temporal expression of the genes by transcriptional and post-transcriptional control mechanisms. Over the years several groups created Runx3-deficient mouse models. Analysis of these mice revealed various phenotypic features that result from loss of cell autonomous function of Runx3. Here we summarize the phenotypic similarities and dissimilarities between two of the Runx3-deficient mouse strains, discuss the basis of the discrepancies and highlight the crux of the dispute.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Camundongos Knockout/fisiologia , Fenótipo , Animais , Anticorpos/imunologia , Ataxia/etiologia , Ataxia/genética , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Extremidades/patologia , Regulação da Expressão Gênica , Hiperplasia/etiologia , Hiperplasia/genética , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Leucócitos/imunologia , Camundongos
13.
Sci Adv ; 5(4): eaau8389, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31032403

RESUMO

Patients with neurofibromatosis type 1 (NF1) are predisposed to develop neurofibromas, but the underlying molecular mechanisms of neurofibromagenesis are not fully understood. We showed dual genetic deletion of Runx1 and Runx3 in Schwann cells (SCs) and SC precursors delayed neurofibromagenesis and prolonged mouse survival. We identified peripheral myelin protein 22 (Pmp22/Gas3) related to neurofibroma initiation. Knockdown of Pmp22 with short hairpin RNAs increased Runx1fl/fl;Runx3fl/fl;Nf1fl/fl;DhhCre tumor-derived sphere numbers and enabled significantly more neurofibroma-like microlesions on transplantation. Conversely, overexpression of Pmp22 in mouse neurofibroma SCs decreased cell proliferation. Mechanistically, RUNX1/3 regulated alternative promoter usage and induced levels of protein expression of Pmp22 to control SC growth. Last, pharmacological inhibition of RUNX/core-binding factor ß (CBFB) activity significantly reduced neurofibroma volume in vivo. Thus, we identified a signaling pathway involving RUNX1/3 suppression of Pmp22 in neurofibroma initiation and/or maintenance. Targeting disruption of RUNX/CBFB interaction might provide a novel therapy for patients with neurofibroma.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas da Mielina/metabolismo , Neurofibroma/metabolismo , Alelos , Animais , Sequência de Bases , Proliferação de Células , Sobrevivência Celular , Subunidade beta de Fator de Ligação ao Core/metabolismo , Feminino , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Nus , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais , Transcriptoma
14.
BMC Evol Biol ; 8: 228, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18681949

RESUMO

BACKGROUND: Members of the Runx family of transcriptional regulators, which bind DNA as heterodimers with CBFbeta, are known to play critical roles in embryonic development in many triploblastic animals such as mammals and insects. They are known to regulate basic developmental processes such as cell fate determination and cellular potency in multiple stem-cell types, including the sensory nerve cell progenitors of ganglia in mammals. RESULTS: In this study, we detect and characterize the hitherto unexplored Runx/CBFbeta genes of cnidarians and sponges, two basal animal lineages that are well known for their extensive regenerative capacity. Comparative structural modeling indicates that the Runx-CBFbeta-DNA complex from most cnidarians and sponges is highly similar to that found in humans, with changes in the residues involved in Runx-CBFbeta dimerization in either of the proteins mirrored by compensatory changes in the binding partner. In situ hybridization studies reveal that Nematostella Runx and CBFbeta are expressed predominantly in small isolated foci at the base of the ectoderm of the tentacles in adult animals, possibly representing neurons or their progenitors. CONCLUSION: These results reveal that Runx and CBFbeta likely functioned together to regulate transcription in the common ancestor of all metazoans, and the structure of the Runx-CBFbeta-DNA complex has remained extremely conserved since the human-sponge divergence. The expression data suggest a hypothesis that these genes may have played a role in nerve cell differentiation or maintenance in the common ancestor of cnidarians and bilaterians.


Assuntos
Cnidários/genética , Subunidades alfa de Fatores de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/genética , Poríferos/genética , Fatores de Transcrição/genética , Animais , Cnidários/classificação , Mapeamento de Sequências Contíguas , Subunidades alfa de Fatores de Ligação ao Core/química , Subunidade beta de Fator de Ligação ao Core/química , Evolução Molecular , Etiquetas de Sequências Expressas , Modelos Moleculares , Filogenia , Poríferos/classificação , Conformação Proteica , Fatores de Transcrição/química
15.
BMC Dev Biol ; 7: 84, 2007 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-17626615

RESUMO

BACKGROUND: Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. RESULTS: We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC) was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. CONCLUSION: The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non redundant and underscore the significance of alternative promoter usage in Runx1 biology.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese Extramedular/genética , Regiões Promotoras Genéticas , Timo/embriologia , Alelos , Animais , Apoptose , Diferenciação Celular , Ensaio de Unidades Formadoras de Colônias , Primers do DNA , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Genes Letais , Células-Tronco Hematopoéticas/citologia , Hibridização In Situ , Camundongos , Camundongos Knockout , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Timo/citologia
16.
Mech Dev ; 123(11): 842-50, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17011173

RESUMO

The three mammalian Runx transcription factors, some of which are known to be involved in human genetic diseases and cancer, are pivotal players in embryo development and function as key regulators of cell fate determination and organogenesis. Here, we report the expression of Runx1 during the development of hair and other skin appendages in the mouse and describe the effect of Runx1 on the structural hair output. In hair follicles, where the three Runx proteins are expressed, Runx1 expression is most prominent in both mesenchymal and epithelial compartments. The epithelial expression includes the hair keratin forming layers of the hair shaft and the bulge, where interestingly, Runx1 is co-expressed with keratin 15, a putative hair follicle stem cell marker. In the hair mesenchyme, during early stages of hair morphogenesis, Runx1 is expressed in a discrete dermal sub-epithelial layer, while at later stages it is found in a hair cycle dependent pattern in the dermal papilla. To elucidate the function of Runx1 in the hair follicle we have generated a Runx1 epidermal conditional knockout and found that the mutant mice display a remarkable structural deformation of the zigzag hair type. The data delineate Runx1 as a novel specific marker of several hair follicle cell types and sheds light on its role in hair morphogenesis and differentiation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Pele/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Cabelo/citologia , Cabelo/embriologia , Camundongos , Camundongos Knockout , Pele/citologia , Pele/embriologia , Pele/crescimento & desenvolvimento
17.
J Biomol Struct Dyn ; 24(4): 343-58, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17206850

RESUMO

The Runt domain proteins are eukaryotic transcription factors that regulate major developmental pathways. All members of this family contain a highly-conserved sequence-specific DNA binding domain: the Runt domain (RD). Structural and biochemical studies have shown that the Runt domain undergoes a conformational transition upon binding to DNA and that this process is regulated by an unrelated partner protein CBFbeta that enhances the DNA binding affinity of RD. Most of the reported studies on the Runt domain transcription factors were performed on proteins from mammals and Drosophila whereas very little has been known about the C. elegans RD protein, RUN, which provides the simplest model system for understanding the function of this class of transcription factors. We performed computational studies on RD domains from various species including C. elegans, Drosophila, and human, using the atom-atom contact surface area scoring method. The scoring analysis indicates that the DNA binding regulation of the C. elegans RD protein (CeRD) occurs via its interaction with a CBFbeta-like partner, as found for the human proteins, whereas a different mode of regulation may occur in the Drosophila system. Sequence, secondary structure and fold analyses of a putative CBFbeta protein identified in the C. elegans genome, CeCBFbeta, sharing a 22% identity with the human protein, predict a similar structure of this protein to that of the human CBFbeta protein. We produced the C. elegans proteins CeRD and CeCBFbeta in bacteria and confirmed their physical interaction as well as cross interactions with the corresponding human proteins. We also confirmed the structural similarity of CBFbeta and CeCBFbeta by circular dichroism analysis. The combined results suggest that a similar mechanism of regulation operates for the human and the C. elegans RD proteins despite the low sequence identity between their CBFbeta proteins and the evolutionary distance between the two systems.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Subunidades alfa de Fatores de Ligação ao Core/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Caenorhabditis elegans/química , Clonagem Molecular , Subunidades alfa de Fatores de Ligação ao Core/química , DNA Complementar/genética , Humanos , Dados de Sequência Molecular , Mutagênese , Biossíntese de Proteínas , Conformação Proteica , Proteínas Recombinantes/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
Dev Cell ; 42(4): 388-399.e3, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28829946

RESUMO

Maintaining posture requires tight regulation of the position and orientation of numerous spinal components. Yet, surprisingly little is known about this regulatory mechanism, whose failure may result in spinal deformity as in adolescent idiopathic scoliosis. Here, we use genetic mouse models to demonstrate the involvement of proprioception in regulating spine alignment. Null mutants for Runx3 transcription factor, which lack TrkC neurons connecting between proprioceptive mechanoreceptors and spinal cord, developed peripubertal scoliosis not preceded by vertebral dysplasia or muscle asymmetry. Deletion of Runx3 in the peripheral nervous system or specifically in peripheral sensory neurons, or of enhancer elements driving Runx3 expression in proprioceptive neurons, induced a similar phenotype. Egr3 knockout mice, lacking muscle spindles, but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types may be required for this regulatory mechanism. These findings uncover a central role for the proprioceptive system in maintaining spinal alignment.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Proteína 3 de Resposta de Crescimento Precoce/genética , Mecanorreceptores/metabolismo , Propriocepção , Escoliose/genética , Animais , Elementos Facilitadores Genéticos , Mecanorreceptores/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fenótipo , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Medula Espinal/fisiologia
19.
Structure ; 10(10): 1395-407, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12377125

RESUMO

The Runt domain proteins are transcription regulators of major developmental pathways. Here we present the crystal structures of the Runt domain (RD) of the human protein RUNX1 and its DNA binding site in their free states and compare them with the published crystal structures of RD bound to DNA and to the partner protein CBFbeta. We demonstrate that (1) RD undergoes an allosteric transition upon DNA binding, which is further stabilized by CBFbeta, and that (2) the free DNA target adopts a bent-helical conformation compatible with that of the complex. These findings elucidate the mechanism by which CBFbeta enhances RD binding to DNA as well as the role of the intrinsic conformation of the DNA target in the recognition process.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Conformação de Ácido Nucleico , Proteínas Proto-Oncogênicas , Fatores de Transcrição/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Subunidade alfa 2 de Fator de Ligação ao Core , Cristalografia por Raios X , DNA/química , Modelos Moleculares , Dados de Sequência Molecular
20.
Oncogene ; 23(24): 4211-9, 2004 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15156175

RESUMO

The RUNX are key regulators of lineage-specific gene expression in major developmental pathways. The expression of RUNX genes is tightly regulated, leading to a highly specific spatio/temporal expression pattern and to distinct phenotypes of gene knockouts. This review highlights the extensive structural similarities between the three mammalian RUNX genes and delineates how regulation of their expression at the levels of transcription and translation are orchestrated into the unique RUNX expression pattern.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/fisiologia , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Animais , Subunidade alfa 2 de Fator de Ligação ao Core , Subunidade alfa 3 de Fator de Ligação ao Core , Subunidades alfa de Fatores de Ligação ao Core , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA