Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269895

RESUMO

In the penumbra of a brain infarct, neurons initially remain structurally intact, but perfusion is insufficient to maintain neuronal activity at physiological levels. Improving neuronal recovery in the penumbra has large potential to advance recovery of stroke patients, but penumbral pathology is incompletely understood, and treatments are scarce. We hypothesize that low activity in the penumbra is associated with apoptosis and thus contributes to irreversible neuronal damage. We explored the putative relationship between low neuronal activity and apoptosis in cultured neurons exposed to variable durations of hypoxia or TTX. We combined electrophysiology and live apoptosis staining in 42 cultures, and compared effects of hypoxia and TTX silencing in terms of network activity and apoptosis. Hypoxia rapidly reduced network activity, but cultures showed limited apoptosis during the first 12 h. After 24 h, widespread apoptosis had occurred. This was associated with full activity recovery observed upon reoxygenation within 12 h, but not after 24 h. Similarly, TTX exposure strongly reduced activity, with full recovery upon washout within 12 h, but not after 24 h. Mean temporal evolution of apoptosis in TTX-treated cultures was the same as in hypoxic cultures. These results suggest that prolonged low activity may be a common factor in the pathways towards apoptosis.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Apoptose , Isquemia Encefálica/metabolismo , Humanos , Hipóxia/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo
2.
Stem Cell Reports ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39366380

RESUMO

Fragmented network bursts (NBs) are observed as a phenotypic driver in many patient-derived neuronal networks on multi-electrode arrays (MEAs), but the pathophysiological mechanisms underlying this phenomenon are unknown. Here, we used our previously developed biophysically detailed in silico model to investigate these mechanisms. Fragmentation of NBs in our model simulations occurred only when the level of short-term synaptic depression (STD) was enhanced, suggesting that STD is a key player. Experimental validation with Dynasore, an STD enhancer, induced fragmented NBs in healthy neuronal networks in vitro. Additionally, we showed that strong asynchronous neurotransmitter release, NMDA currents, or short-term facilitation (STF) can support the emergence of multiple fragments in NBs by producing excitation that persists after high-frequency firing stops. Our results provide important insights into disease mechanisms and potential pharmaceutical targets for neurological disorders modeled using human induced pluripotent stem cell (hiPSC)-derived neurons.

3.
J Neural Eng ; 18(4)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33892486

RESUMO

In systems consolidation, encoded memories are replayed by the hippocampus during slow-wave sleep (SWS), and permanently stored in the neocortex. Declarative memory consolidation is believed to benefit from the oscillatory rhythms and low cholinergic tone observed in this sleep stage, but underlying mechanisms remain unclear. To clarify the role of cholinergic modulation and synchronized activity in memory consolidation, we applied repeated electrical stimulation in mature cultures of dissociated rat cortical neurons with high or low cholinergic tone, mimicking the cue replay observed during systems consolidation under distinct cholinergic concentrations. In the absence of cholinergic input, these cultures display activity patterns hallmarked by network bursts, synchronized events reminiscent of the low frequency oscillations observed during SWS. They display stable activity and connectivity, which mutually interact and achieve an equilibrium. Electrical stimulation reforms the equilibrium to include the stimulus response, a phenomenon interpreted as memory trace formation. Without cholinergic input, activity was burst-dominated. First application of a stimulus induced significant connectivity changes, while subsequent repetition no longer affected connectivity. Presenting a second stimulus at a different electrode had the same effect, whereas returning to the initial stimuli did not induce further connectivity alterations, indicating that the second stimulus did not erase the 'memory trace' of the first. Distinctively, cultures with high cholinergic tone displayed reduced network excitability and dispersed firing, and electrical stimulation did not induce significant connectivity changes. We conclude that low cholinergic tone facilitates memory formation and consolidation, possibly through enhanced network excitability. Network bursts or SWS oscillations may merely reflect high network excitability.


Assuntos
Memória , Sono de Ondas Lentas , Animais , Colinérgicos , Hipocampo , Neurônios , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA