Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Perfusion ; 37(7): 745-751, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33998349

RESUMO

BACKGROUND: Extracorporeal cardiopulmonary resuscitation (ECPR) for refractory cardiac arrest has improved mortality in post-cardiac surgery patients; however, loss of neurologic function remains one of the main and devastating complications. We reviewed our experience with ECPR and investigated the effect of cannulation strategy on neurologic outcome in adult patients who experienced cardiac arrest following cardiac surgery that was managed with ECPR. METHODS: Patients were categorized by central versus percutaneous peripheral VA-extracorporeal membrane oxygenation (ECMO) cannulation strategy. We reviewed patient records and evaluated in-hospital mortality, cause of death, and neurologic status 72 hours after cannulation. RESULTS: From January 2010 to September 2019, 44 patients underwent post-cardiac surgery ECPR for cardiac arrest. Twenty-six patients received central cannulation; 18 patients received peripheral cannulation. Mean post-operative day of the cardiac arrest was 3 and 9 days (p = 0.006), and mean time between initiation of CPR and ECMO was 40 ± 24 and 28 ± 22 minutes for central and peripheral cannulation, respectively. After 72 hours of VA-ECMO support, 30% of centrally cannulated patients versus 72% of peripherally cannulated patients attained cerebral performance status 1-2 (p = 0.01). Anoxic brain injury was the cause of death in 26.9% of centrally cannulated and 11.1% of peripherally cannulated patients. Survival to discharge was 31% and 39% for central and peripheral cannulation, respectively. CONCLUSIONS: Peripheral VA-ECMO allows for continuous CPR and systemic perfusion while obtaining vascular access. Compared to central cannulation, a peripheral cannulation strategy is associated with improved neurologic outcomes and decreased likelihood of anoxic brain death.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Reanimação Cardiopulmonar , Oxigenação por Membrana Extracorpórea , Parada Cardíaca , Adulto , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Cateterismo , Parada Cardíaca/etiologia , Parada Cardíaca/terapia , Humanos , Estudos Retrospectivos , Resultado do Tratamento
3.
BMC Biol ; 16(1): 62, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871632

RESUMO

BACKGROUND: Single-cell genomic methods now provide unprecedented resolution for characterizing the component cell types and states of tissues such as the epithelial subsets of the gastrointestinal tract. Nevertheless, functional studies of these subsets at scale require faithful in vitro models of identified in vivo biology. While intestinal organoids have been invaluable in providing mechanistic insights in vitro, the extent to which organoid-derived cell types recapitulate their in vivo counterparts remains formally untested, with no systematic approach for improving model fidelity. RESULTS: Here, we present a generally applicable framework that utilizes massively parallel single-cell RNA-seq to compare cell types and states found in vivo to those of in vitro models such as organoids. Furthermore, we leverage identified discrepancies to improve model fidelity. Using the Paneth cell (PC), which supports the stem cell niche and produces the largest diversity of antimicrobials in the small intestine, as an exemplar, we uncover fundamental gene expression differences in lineage-defining genes between in vivo PCs and those of the current in vitro organoid model. With this information, we nominate a molecular intervention to rationally improve the physiological fidelity of our in vitro PCs. We then perform transcriptomic, cytometric, morphologic and proteomic characterization, and demonstrate functional (antimicrobial activity, niche support) improvements in PC physiology. CONCLUSIONS: Our systematic approach provides a simple workflow for identifying the limitations of in vitro models and enhancing their physiological fidelity. Using adult stem cell-derived PCs within intestinal organoids as a model system, we successfully benchmark organoid representation, relative to that in vivo, of a specialized cell type and use this comparison to generate a functionally improved in vitro PC population. We predict that the generation of rationally improved cellular models will facilitate mechanistic exploration of specific disease-associated genes in their respective cell types.


Assuntos
Genômica/métodos , Organoides/citologia , Celulas de Paneth/citologia , Análise de Célula Única/métodos , Humanos , Modelos Biológicos , Proteômica , Análise de Sequência de RNA , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA