Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 139, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337252

RESUMO

BACKGROUND: Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS: We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS: The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.


Assuntos
Genoma , Poríferos , Animais , Poríferos/genética , Poríferos/metabolismo , Genômica , Fatores de Transcrição/genética , Transdução de Sinais , Filogenia
3.
BMC Genomics ; 23(1): 858, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581804

RESUMO

Sponges are interesting animal models for regeneration studies, since even from dissociated cells, they are able to regenerate completely. In particular, explants are model systems that can be applied to many sponge species, since small fragments of sponges can regenerate all elements of the adult, including the oscula and the ability to pump water. The morphological aspects of regeneration in sponges are relatively well known, but the molecular machinery is only now starting to be elucidated for some sponge species. Here, we have used an explant system of the demosponge Halichondria panicea to understand the molecular machinery deployed during regeneration of the aquiferous system. We sequenced the transcriptomes of four replicates of the 5-day explant without an osculum (NOE), four replicates of the 17-18-day explant with a single osculum and pumping activity (PE) and also four replicates of field-collected individuals with regular pumping activity (PA), and performed differential gene expression analysis. We also described the morphology of NOE and PE samples using light and electron microscopy. Our results showed a highly disorganised mesohyl and disarranged aquiferous system in NOE that is coupled with upregulated pathways of ciliogenesis, organisation of the ECM, and cell proliferation and survival. Once the osculum is formed, genes involved in "response to stimulus in other organisms" were upregulated. Interestingly, the main molecular machinery of vasculogenesis described in vertebrates was activated during the regeneration of the aquiferous system. Notably, vasculogenesis markers were upregulated when the tissue was disorganised and about to start forming canals (NOE) and angiogenic stimulators and ECM remodelling machineries were differentially expressed once the aquiferous system was in place (PE and PA). Our results are fundamental to better understanding the molecular mechanisms involved in the formation of the aquiferous system in sponges, and its similarities with the early onset of blood-vessel formation in animal evolution.


Assuntos
Poríferos , Água , Animais , Sobrevivência Celular , Regeneração/genética , Transporte Biológico , Sequência de Bases , Poríferos/genética
4.
Bioessays ; 40(9): e1700237, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30070368

RESUMO

Sponges are important but often-neglected organisms. The absence of classical animal traits (nerves, digestive tract, and muscles) makes sponges challenging for non-specialists to work with and has delayed getting high quality genomic data compared to other invertebrates. Yet analyses of sponge genomes and transcriptomes currently available have radically changed our understanding of animal evolution. Sponges are of prime evolutionary importance as one of the best candidates to form the sister group of all other animals, and genomic data are essential to understand the mechanisms that control animal evolution and diversity. Here we review the most significant outcomes of current genomic and transcriptomic analyses of sponges, and discuss limitations and future directions of sponge transcriptomic and genomic studies.


Assuntos
Genoma/genética , Poríferos/genética , Transcriptoma/genética , Animais , Evolução Molecular , Genômica/métodos
5.
J Paleontol ; n/a: 1937-2337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31631908

RESUMO

The lower-middle Hetang Formation (Cambrian Stage 2-3) deposited in slope-basinal facies in South China is well-known for its preservation of the earliest articulated sponge fossils, providing an important taphonomic window into the Cambrian explosion. However, the Hetang Formation also hosts a number of problematic animal fossils that have not been systematically described. This omission results in an incomplete picture of the Hetang biota and limits its contribution to the understanding of the early evolution of animals. Here we describe a new animal taxon, Cambrowania ovata Tang and Xiao, new genus new species, from the middle Hetang Formation in the Lantian area of southern Anhui Province, South China. Specimens are preserved as carbonaceous compressions, although some are secondarily mineralized. A comprehensive analysis using reflected light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and micro-CT reveals that the new species is characterized by a spheroidal to fusoidal truss-like structure consisting of rafter-like crossbars, some of which are secondarily baritized and may have been internally hollow. Some specimens have aperture-like structures that are broadly similar to oscula of sponges, whereas others show evidence of a medial split reminiscent of gaping carapaces. While the phylogenetic affinity of Cambrowania ovata Tang and Xiao, new genus new species remains problematic, we propose that it may represent carapaces of bivalved arthropods or more likely sponges in early life stages. Along with other problematic metazoan fossils such as hyolithids and sphenothallids, Cambrowania ovata Tang and Xiao, new genus new species adds to the diversity of the sponge-dominated Hetang biota in an early Cambrian deep-water slope-basinal environment.

6.
Dev Biol ; 431(1): 93-100, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28647138

RESUMO

A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the sponge sensory system.


Assuntos
Poríferos/citologia , Poríferos/genética , Animais , Evolução Molecular , Expressão Gênica , Filogenia , Poríferos/fisiologia , Sensação/genética , Sensação/fisiologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/genética
7.
BMC Evol Biol ; 18(1): 12, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29394881

RESUMO

BACKGROUND: The Wnt signaling pathway is uniquely metazoan and used in many processes during development, including the formation of polarity and body axes. In sponges, one of the earliest diverging animal groups, Wnt pathway genes have diverse expression patterns in different groups including along the anterior-posterior axis of two sponge larvae, and in the osculum and ostia of others. We studied the function of Wnt signaling and body polarity formation through expression, knockdown, and larval manipulation in several freshwater sponge species. RESULTS: Sponge Wnts fall into sponge-specific and sponge-class specific subfamilies of Wnt proteins. Notably Wnt genes were not found in transcriptomes of the glass sponge Aphrocallistes vastus. Wnt and its signaling genes were expressed in archaeocytes of the mesohyl throughout developing freshwater sponges. Osculum formation was enhanced by GSK3 knockdown, and Wnt antagonists inhibited both osculum development and regeneration. Using dye tracking we found that the posterior poles of freshwater sponge larvae give rise to tissue that will form the osculum following metamorphosis. CONCLUSIONS: Together the data indicate that while components of canonical Wnt signaling may be used in development and maintenance of osculum tissue, it is likely that Wnt signaling itself occurs between individual cells rather than whole tissues or structures in freshwater sponges.


Assuntos
Água Doce , Poríferos/metabolismo , Via de Sinalização Wnt , Animais , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Larva/genética , Filogenia , Poríferos/genética , Interferência de RNA , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
8.
Mol Ecol ; 26(4): 1045-1059, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28012216

RESUMO

Understanding patterns of reproduction, dispersal and recruitment in deep-sea communities is increasingly important with the need to manage resource extraction and conserve species diversity. Glass sponges are usually found in deep water (>1000 m) worldwide but form kilometre-long reefs on the continental shelf of British Columbia and Alaska that are under threat from trawling and resource exploration. Due to their deep-water habitat, larvae have not yet been found and the level of genetic connectivity between reefs and nonreef communities is unknown. The genetic structure of Aphrocallistes vastus, the primary reef-building species in the Strait of Georgia (SoG) British Columbia, was studied using single nucleotide polymorphisms (SNPs). Pairwise comparisons of multilocus genotypes were used to assess whether sexual reproduction is common. Structure was examined 1) between individuals in reefs, 2) between reefs and 3) between sites in and outside the SoG. Sixty-seven SNPs were genotyped in 91 samples from areas in and around the SoG, including four sponge reefs and nearby nonreef sites. The results show that sponge reefs are formed through sexual reproduction. Within a reef and across the SoG basin, the genetic distance between individuals does not vary with geographic distance (r = -0.005 to 0.014), but populations within the SoG basin are genetically distinct from populations in Barkley Sound, on the west coast of Vancouver Island. Population structure was seen across all sample sites (global FST  = 0.248), especially between SoG and non-SoG locations (average pairwise FST  = 0.251). Our results suggest that genetic mixing occurs across sponge reefs via larvae that disperse widely.


Assuntos
Genética Populacional , Poríferos/genética , Alaska , Animais , Colúmbia Britânica , Ecossistema , Genótipo , Polimorfismo de Nucleotídeo Único
9.
J Exp Biol ; 220(Pt 6): 995-1007, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28011822

RESUMO

Sponges (Porifera) are abundant in most marine and freshwater ecosystems, and as suspension feeders they play a crucial role in filtering the water column. Their active pumping enables them to filter up to 900 times their body volume of water per hour, recycling nutrients and coupling a pelagic food supply with benthic communities. Despite the ecological importance of sponge filter feeding, little is known about how sponges control the water flow through their canal system or how much energy it costs to filter the water. Sponges have long been considered textbook examples of animals that use current-induced flow. We provide evidence that suggests that some species of demosponge do not use current-induced flow; rather, they respond behaviourally to increased ambient currents by reducing the volume of water filtered. Using a morphometric model of the canal system, we also show that filter feeding may be more energetically costly than previously thought. Measurements of volumetric flow rates and oxygen removal in five species of demosponge show that pumping rates are variable within and between species, with the more oxygen consumed the greater the volume filtered. Together, these data suggest that sponges have active control over the volume of water they process, which may be an adaptation to reduce the energetic cost of filtration in times of high stress.


Assuntos
Poríferos/fisiologia , Poríferos/ultraestrutura , Água/metabolismo , Animais , Comportamento Animal , Ecossistema , Metabolismo Energético , Filtração , Oxigênio/metabolismo , Consumo de Oxigênio , Poríferos/anatomia & histologia
10.
Nature ; 466(7307): 720-6, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20686567

RESUMO

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


Assuntos
Evolução Molecular , Genoma/genética , Poríferos/genética , Animais , Apoptose/genética , Adesão Celular/genética , Ciclo Celular/genética , Polaridade Celular/genética , Proliferação de Células , Genes/genética , Genômica , Humanos , Imunidade Inata/genética , Modelos Biológicos , Neurônios/metabolismo , Fosfotransferases/química , Fosfotransferases/genética , Filogenia , Poríferos/anatomia & histologia , Poríferos/citologia , Poríferos/imunologia , Análise de Sequência de DNA , Transdução de Sinais/genética
11.
Mol Biol Evol ; 31(5): 1102-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24497032

RESUMO

Sponges (Porifera) are among the earliest evolving metazoans. Their filter-feeding body plan based on choanocyte chambers organized into a complex aquiferous system is so unique among metazoans that it either reflects an early divergence from other animals prior to the evolution of features such as muscles and nerves, or that sponges lost these characters. Analyses of the Amphimedon and Oscarella genomes support this view of uniqueness-many key metazoan genes are absent in these sponges-but whether this is generally true of other sponges remains unknown. We studied the transcriptomes of eight sponge species in four classes (Hexactinellida, Demospongiae, Homoscleromorpha, and Calcarea) specifically seeking genes and pathways considered to be involved in animal complexity. For reference, we also sought these genes in transcriptomes and genomes of three unicellular opisthokonts, two sponges (A. queenslandica and O. carmela), and two bilaterian taxa. Our analyses showed that all sponge classes share an unexpectedly large complement of genes with other metazoans. Interestingly, hexactinellid, calcareous, and homoscleromorph sponges share more genes with bilaterians than with nonbilaterian metazoans. We were surprised to find representatives of most molecules involved in cell-cell communication, signaling, complex epithelia, immune recognition, and germ-lineage/sex, with only a few, but potentially key, absences. A noteworthy finding was that some important genes were absent from all demosponges (transcriptomes and the Amphimedon genome), which might reflect divergence from main-stem lineages including hexactinellids, calcareous sponges, and homoscleromorphs. Our results suggest that genetic complexity arose early in evolution as shown by the presence of these genes in most of the animal lineages, which suggests sponges either possess cryptic physiological and morphological complexity and/or have lost ancestral cell types or physiological processes.


Assuntos
Evolução Molecular , Poríferos/classificação , Poríferos/genética , Animais , Adesão Celular/genética , Especiação Genética , Genoma , Imunidade Inata/genética , Filogenia , Poríferos/fisiologia , Reprodução/genética , Transdução de Sinais/genética , Transmissão Sináptica/genética , Transcriptoma
12.
J Exp Biol ; 218(Pt 4): 581-91, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25696821

RESUMO

Genomic and transcriptomic analyses show that sponges possess a large repertoire of genes associated with neuronal processes in other animals, but what is the evidence these are used in a coordination or sensory context in sponges? The very different phylogenetic hypotheses under discussion today suggest very different scenarios for the evolution of tissues and coordination systems in early animals. The sponge genomic 'toolkit' either reflects a simple, pre-neural system used to protect the sponge filter or represents the remnants of a more complex signalling system and sponges have lost cell types, tissues and regionalization to suit their current suspension-feeding habit. Comparative transcriptome data can be informative but need to be assessed in the context of knowledge of sponge tissue structure and physiology. Here, I examine the elements of the sponge neural toolkit including sensory cells, conduction pathways, signalling molecules and the ionic basis of signalling. The elements described do not fit the scheme of a loss of sophistication, but seem rather to reflect an early specialization for suspension feeding, which fits with the presumed ecological framework in which the first animals evolved.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Poríferos/fisiologia , Animais , Evolução Biológica , Genoma , Sistema Nervoso/anatomia & histologia , Poríferos/anatomia & histologia , Poríferos/genética , Transdução de Sinais/fisiologia , Transcriptoma
13.
BMC Evol Biol ; 14: 3, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24410880

RESUMO

BACKGROUND: One of the hallmarks of multicellular organisms is the ability of their cells to trigger responses to the environment in a coordinated manner. In recent years primary cilia have been shown to be present as 'antennae' on almost all animal cells, and are involved in cell-to-cell signaling in development and tissue homeostasis; how this sophisticated sensory system arose has been little-studied and its evolution is key to understanding how sensation arose in the Animal Kingdom. Sponges (Porifera), one of the earliest evolving phyla, lack conventional muscles and nerves and yet sense and respond to changes in their fluid environment. Here we demonstrate the presence of non-motile cilia in sponges and studied their role as flow sensors. RESULTS: Demosponges excrete wastes from their body with a stereotypic series of whole-body contractions using a structure called the osculum to regulate the water-flow through the body. In this study we show that short cilia line the inner epithelium of the sponge osculum. Ultrastructure of the cilia shows an absence of a central pair of microtubules and high speed imaging shows they are non-motile, suggesting they are not involved in generating flow. In other animals non-motile, 'primary', cilia are involved in sensation. Here we show that molecules known to block cationic ion channels in primary cilia and which inhibit sensory function in other organisms reduce or eliminate sponge contractions. Removal of the cilia using chloral hydrate, or removal of the whole osculum, also stops the contractions; in all instances the effect is reversible, suggesting that the cilia are involved in sensation. An analysis of sponge transcriptomes shows the presence of several transient receptor potential (TRP) channels including PKD channels known to be involved in sensing changes in flow in other animals. Together these data suggest that cilia in sponge oscula are involved in flow sensation and coordination of simple behaviour. CONCLUSIONS: This is the first evidence of arrays of non-motile cilia in sponge oscula. Our findings provide support for the hypothesis that the cilia are sensory, and if true, the osculum may be considered a sensory organ that is used to coordinate whole animal responses in sponges. Arrays of primary cilia like these could represent the first step in the evolution of sensory and coordination systems in metazoans.


Assuntos
Evolução Biológica , Cílios/fisiologia , Poríferos/fisiologia , Animais , Cílios/genética , Filogenia , Poríferos/classificação , Poríferos/genética , Sensação
14.
Evol Dev ; 16(1): 25-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24393465

RESUMO

The similarities between the choanoflagellates and the choanocytes of sponges have been discussed for more than a century yet few studies allow a direct comparison of the two. We reviewed current knowledge of the collar and flagellum and compared their structure and function in the choanoflagellate Monosiga brevicollis and the sponge Spongilla lacustris. Collar microvilli were of similar length and number, but the shape of the collar differed between the two cells. In Monosiga, collars were flared and microvilli were joined by a single band of glycocalyx mid-way along their length; in Spongilla, collars formed a tube and microvilli were joined by a mesh of glycocalyx. Monosiga flagella beat at least four times faster than those in Spongilla. Flagellar vanes were found in both cell types. In both cells, the flagella and so probably also the vanes maintained moving points of contact with the microvilli, which suggested that collars and flagella were integrated systems rather than independent units. There were fundamental differences in how the collar and flagella interacted, however. In Spongilla, the flagellum bent upon contact with the collar; the flagellar amplitude was fitted to the collar diameter. In Monosiga, the flagellar amplitude was unaffected by the collar; instead the collar diameter appeared fitted to the flagellum. These differences suggest that though choanocytes and choanoflagellates are similar, homology cannot be taken for granted. Similarities in collar-flagellum systems separated by 600 million years of evolution, whether maintained or convergent, suggest that these form important adaptations for optimizing fluid flow through micro-scale filters.


Assuntos
Evolução Biológica , Coanoflagelados/genética , Coanoflagelados/ultraestrutura , Poríferos/genética , Poríferos/ultraestrutura , Animais , Flagelos/ultraestrutura , Microvilosidades/ultraestrutura
15.
J Comp Physiol B ; 194(2): 121-130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553641

RESUMO

The freshwater sponge, Ephydatia muelleri, lacks a nervous or endocrine system and yet it exhibits a coordinated whole-body action known as a "sneeze" that can be triggered by exposure to L-glutamate. It is not known how L-glutamate is obtained by E. muelleri in sufficient quantities (i.e., 70 µM) to mediate this response endogenously. The present study tested the hypothesis that L-glutamate can be directly acquired from the environment across the body surface of E. muelleri. We demonstrate carrier mediated uptake of two distinct saturable systems with maximal transport rates (Jmax) of 64.27 ± 4.98 and 25.12 ± 1.87 pmols mg-1 min-1, respectively. The latter system has a higher calculated substrate affinity (Km) of 2.87 ± 0.38 µM compared to the former (8.75 ± 1.00 µM), indicative of distinct systems that can acquire L-glutamate at variable environmental concentrations. Further characterization revealed potential shared pathways of L-glutamate uptake with other negatively charged amino acids, namely D-glutamate and L-aspartate, as well as the neutral amino acid L-alanine. We demonstrate that L-glutamate uptake does not appear to rely on exogenous sodium or proton concentrations as removal of these ions from the bathing media did not significantly alter uptake. Likewise, L-glutamate uptake does not seem to rely on internal proton motive forces driven by VHA as application of 100 nM of the VHA inhibitor bafilomycin did not alter uptake rates within E. muelleri tissues. Whether the acquired amino acid is used to supplement feeding or is stored and accumulated to mediate the sneeze response remains to be determined.


Assuntos
Ácido Glutâmico , Poríferos , Animais , Ácido Glutâmico/metabolismo , Poríferos/metabolismo , Água Doce , Transporte Biológico , Macrolídeos/farmacologia , Macrolídeos/metabolismo
17.
R Soc Open Sci ; 10(6): 230423, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351491

RESUMO

Well-annotated and contiguous genomes are an indispensable resource for understanding the evolution, development, and metabolic capacities of organisms. Sponges, an ecologically important non-bilaterian group of primarily filter-feeding sessile aquatic organisms, are underrepresented with respect to available genomic resources. Here we provide a high-quality and well-annotated genome of Aphrocallistes vastus, a glass sponge (Porifera: Hexactinellida) that forms large reef structures off the coast of British Columbia (Canada). We show that its genome is approximately 80 Mb, small compared to most other metazoans, and contains nearly 2500 nested genes, more than other genomes. Hexactinellida is characterized by a unique skeletal architecture made of amorphous silicon dioxide (SiO2), and we identified 419 differentially expressed genes between the osculum, i.e. the vertical growth zone of the sponge, and the main body. Among the upregulated ones, mineralization-related genes such as glassin, as well as collagens and actins, dominate the expression profile during growth. Silicateins, suggested being involved in silica mineralization, especially in demosponges, were not found at all in the A. vastus genome and suggests that the underlying mechanisms of SiO2 deposition in the Silicea sensu stricto (Hexactinellida + Demospongiae) may not be homologous.

18.
J Exp Zool B Mol Dev Evol ; 318(6): 438-47, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22057924

RESUMO

At the point in animal evolution when cells began to adhere to each other they presumably initially functioned as colonies. The formation of an epithelium that enclosed and controlled an internal milieu would have been the first event to distinguish an individual animal from a colony. To better understand when the first epithelium arose and what its characteristics were, we evaluate the morphological, functional, and molecular characters of epithelia in sponges, considered here the extant representatives of the first metazoans. In particular, we show new claudin-like sequences from sponges align most closely with sequences from Drosophila that have a barrier function in septate junctions. We also show that type IV collagen, the main component of the basement membrane (BM), is present in calcareous sponges, and we confirm the presence of type IV-like collagen (spongin short chain collagen) in other sponges. Though in sponges as in other metazoans the epithelium has grades of specialization with varying complexity of junctions and the BM, the main character of a functional epithelium, the ability to seal and control the ionic composition of the internal milieu, is a property of even the simplest sponge epithelium, and therefore the first metazoans likely also had epithelia with these characteristics, which we consider a "true" epithelium.


Assuntos
Evolução Biológica , Epitélio/fisiologia , Tegumento Comum/fisiologia , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Colágeno/classificação , Colágeno/genética , Colágeno/metabolismo , Junções Intercelulares , Dados de Sequência Molecular
20.
J Exp Biol ; 215(Pt 14): 2435-44, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22723483

RESUMO

A cDNA encoding a potassium channel of the two-pore domain family (K(2P), KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK(2P) cannot be placed into any of the established functional groups of mammalian K(2P) channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK(2P). In whole cells, non-inactivating, voltage-independent, outwardly rectifying K(+) currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC(50) ∼30 µmol l(-1)), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK(2P) but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K(2P) channels, the sponge K(2P) channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pK(a) 8.18) activated the AquK(2P) channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K(2P) channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K(2P) channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA.


Assuntos
Álcalis/farmacologia , Organismos Aquáticos/fisiologia , Ácidos Graxos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Poríferos/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sequência de Aminoácidos , Animais , Organismos Aquáticos/efeitos dos fármacos , Ácido Araquidônico/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Dados de Sequência Molecular , Osmose/efeitos dos fármacos , Filogenia , Poríferos/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/química , Homologia de Sequência de Aminoácidos , Temperatura , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA