Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(25): e2304833120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311001

RESUMO

The slow kinetics and poor substrate specificity of the key photosynthetic CO2-fixing enzyme Rubisco have prompted the repeated evolution of Rubisco-containing biomolecular condensates known as pyrenoids in the majority of eukaryotic microalgae. Diatoms dominate marine photosynthesis, but the interactions underlying their pyrenoids are unknown. Here, we identify and characterize the Rubisco linker protein PYCO1 from Phaeodactylum tricornutum. PYCO1 is a tandem repeat protein containing prion-like domains that localizes to the pyrenoid. It undergoes homotypic liquid-liquid phase separation (LLPS) to form condensates that specifically partition diatom Rubisco. Saturation of PYCO1 condensates with Rubisco greatly reduces the mobility of droplet components. Cryo-electron microscopy and mutagenesis data revealed the sticker motifs required for homotypic and heterotypic phase separation. Our data indicate that the PYCO1-Rubisco network is cross-linked by PYCO1 stickers that oligomerize to bind to the small subunits lining the central solvent channel of the Rubisco holoenzyme. A second sticker motif binds to the large subunit. Pyrenoidal Rubisco condensates are highly diverse and tractable models of functional LLPS.


Assuntos
Diatomáceas , Príons , Ribulose-Bifosfato Carboxilase/genética , Microscopia Crioeletrônica , Condensados Biomoleculares , Diatomáceas/genética
2.
J Cell Sci ; 127(Pt 4): 727-39, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24338362

RESUMO

The kinesin motors are important in the regulation of cellular functions such as protein trafficking, spindle organization and centrosome separation. In this study, we have identified POPX2, a serine-threonine phosphatase, as an interacting partner of the KAP3 subunit of the kinesin-2 motor. The kinesin-2 motor is a heterotrimeric complex composed of KIF3A, KIF3B motor subunits and KAP3, the non-motor subunit, which binds the cargo. Here we report that the phosphatase POPX2 is a negative regulator of the trafficking of N-cadherin and other cargoes; consequently, it markedly influences cell-cell adhesion. POPX2 affects trafficking by determining the phosphorylation status of KIF3A at serine 690. This is consistent with the observation that the KIF3A-S690A mutant is defective in cargo trafficking. Our studies also implicate CaMKII as the kinase that phosphorylates KIF3A at serine 690. These results strongly suggest that POPX2 and CaMKII are a phosphatase-kinase pair that regulates kinesin-mediated transport and cell-cell adhesion.


Assuntos
Cinesinas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Células COS , Caderinas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Adesão Celular , Chlorocebus aethiops , Sequência Conservada , Células HeLa , Humanos , Cinesinas/química , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , beta Catenina/metabolismo
3.
Commun Biol ; 6(1): 62, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653484

RESUMO

Biochemical signaling and mechano-transduction are both critical in regulating stem cell fate. How crosstalk between mechanical and biochemical cues influences embryonic development, however, is not extensively investigated. Using a comparative study of focal adhesion constituents between mouse embryonic stem cell (mESC) and their differentiated counterparts, we find while zyxin is lowly expressed in mESCs, its levels increase dramatically during early differentiation. Interestingly, overexpression of zyxin in mESCs suppresses Oct4 and Nanog. Using an integrative biochemical and biophysical approach, we demonstrate involvement of zyxin in regulating pluripotency through actin stress fibres and focal adhesions which are known to modulate cellular traction stress and facilitate substrate rigidity-sensing. YAP signaling is identified as an important biochemical effector of zyxin-induced mechanotransduction. These results provide insights into the role of zyxin in the integration of mechanical and biochemical cues for the regulation of embryonic stem cell fate.


Assuntos
Mecanotransdução Celular , Transdução de Sinais , Animais , Camundongos , Zixina/genética , Zixina/metabolismo , Adesões Focais/metabolismo , Células-Tronco Embrionárias/metabolismo
4.
Sci Rep ; 11(1): 1952, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479476

RESUMO

Studying the swimming behaviour of bacteria in 3 dimensions (3D) allows us to understand critical biological processes, such as biofilm formation. It is still unclear how near wall swimming behaviour may regulate the initial attachment and biofilm formation. It is challenging to address this as visualizing the movement of bacteria with reasonable spatial and temporal resolution in a high-throughput manner is technically difficult. Here, we compared the near wall (vertical) swimming behaviour of P. aeruginosa (PAO1) and its mutants ΔdipA (reduced in swarming motility and increased in biofilm formation) and ΔfimX (deficient in twitching motility and reduced in biofilm formation) using our new imaging technique based on light sheet microscopy. We found that P. aeruginosa (PAO1) increases its speed and changes its swimming angle drastically when it gets closer to a wall. In contrast, ΔdipA mutant moves toward the wall with steady speed without changing of swimming angle. The near wall behavior of ΔdipA allows it to be more effective to interact with the wall or wall-attached cells, thus leading to more adhesion events and a larger biofilm volume during initial attachment when compared with PAO1. Furthermore, we found that ΔfimX has a similar near wall swimming behavior as PAO1. However, it has a higher dispersal frequency and smaller biofilm formation when compared with PAO1 which can be explained by its poor twitching motility. Together, we propose that near wall swimming behavior of P. aeruginosa plays an important role in the regulation of initial attachment and biofilm formation.


Assuntos
Biofilmes , Pseudomonas aeruginosa/fisiologia , Natação
5.
J Cell Biochem ; 110(3): 725-31, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20512932

RESUMO

Mitotic catastrophe is a phenomenon displayed by cells undergoing aberrant mitosis to eliminate cells that fail to repair the errors. Why and how mitotic catastrophe would lead to cell death remains to be resolved and the answer will prove valuable in design of better therapeutic agents that specifically target such cells in mitosis. The antibiotic actinomycin D has been shown to induce chromosomal lesions in lower order organisms as well as in human interphase cells. Relatively few studies have been conducted to elucidate molecular events in the context of mitotic DNA damage. We have previously established a model of mitotic catastrophe in human HeLa cells induced by actinomycin D. Here, we show that actinomycin D induce cellular stress via DNA damage during mitosis. The higher order packing of chromosomes during mitosis might impede efficient DNA repair. gammaH2AX serves as a marker for DNA repair and active JNK interacts with gammaH2AX in actinomycin D-treated mitotic extracts. We believe JNK might be in part, responsible for the phosphorylation of H2AX and thereby, facilitate the propagation of a positive signal for cell death, when repair is not achieved. The mitotic cell activates JNK-mediated cell death response that progresses through a caspase cascade downstream of the mitochondria. In the mean time, remaining checkpoint signals may be sufficient to put a restraining hand on entry into anaphase and the cell eventually dies in mitosis.


Assuntos
Dano ao DNA/fisiologia , MAP Quinase Quinase 4/metabolismo , Mitose/fisiologia , Estresse Fisiológico/fisiologia , Western Blotting , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dactinomicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Imunofluorescência , Células HeLa , Histonas/metabolismo , Humanos , Imunoprecipitação , MAP Quinase Quinase 4/efeitos dos fármacos , Mitose/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fosforilação , Estresse Fisiológico/efeitos dos fármacos
6.
Oncotarget ; 11(1): 74-85, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32002125

RESUMO

High level of the multifunctional AAA-ATPase p97/VCP is often correlated to the development of cancer; however, the underlying mechanism is not understood completely. Here, we report a novel function of p97/VCP in actin regulation and cell motility. We found that loss of p97/VCP promotes stabilization of F-actin, which cannot be reversed by actin-destabilizing agent, Cytochalasin D. Live-cell imaging demonstrated reduced actin dynamics in p97/VCP-knockdown cells, leading to compromised cell motility. We further examined the underlying mechanism and found elevated RhoA protein levels along with increased phosphorylation of its downstream effectors, ROCK, LIMK, and MLC upon the knockdown of p97/VCP. Since p97/VCP is indispensable in the ubiquitination-dependent protein degradation pathway, we investigated if the loss of p97/VCP hinders the protein degradation of RhoA. Knockdown of p97/VCP resulted in a higher amount of ubiquitinated RhoA, suggesting p97/VCP involvement in the proteasome-dependent protein degradation pathway. Finally, we found that p97/VCP interacts with FBXL19, a molecular chaperone known to guide ubiquitinated RhoA for proteasomal degradation. Reduction of p97/VCP may result in the accumulation of RhoA which, in turn, enhances cytoplasmic F-actin formation. In summary, our study uncovered a novel function of p97/VCP in actin regulation and cell motility via the Rho-ROCK dependent pathway which provides fundamental insights into how p97/VCP is involved in cancer development.

7.
Lab Chip ; 9(17): 2591-5, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19680583

RESUMO

Embryonic stem (ES) cells are pluripotent cells, which can differentiate into any cell type. This cell type has often been implicated as an eminent source of renewable cells for tissue regeneration and cellular replacement therapies. Studies on manipulation of the various differentiation pathways have been at the forefront of research. There are many ways in which ES cells can be differentiated. One of the most common techniques is to initiate the development of embryoid bodies (EBs) by in vitro aggregation of ES cells. Thereafter, EBs can be induced to undergo differentiation into various cell lineages. In this article, we present a microfluidic platform using biocompatible materials, which is suitable for culturing EBs. The platform is based on a Y-channel device with two inlets for two different culturing media. An EB is located across both streams. Using the laminar characteristics at low Reynolds number and high Peclet numbers, we have induced cell differentiation on half of the EB while maintaining the other half in un-induced stages. The results prove the potential of using microfluidic technology for manipulation of EBs and ES cells in tissue engineering.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Microfluídica/instrumentação , Animais , Western Blotting , Imunofluorescência , Camundongos
8.
Trends Cell Biol ; 13(11): 553-7, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14573347

RESUMO

The small GTPase Ran has a well-established role in nucleocytoplasmic trafficking. In recent years, the repertoire of Ran has expanded to include regulation of spindle assembly, formation of the nuclear envelope and DNA replication. Now, new studies further extend the role of Ran to regulating the spindle checkpoint during mitosis.


Assuntos
Proteínas de Ciclo Celular , Proteínas Nucleares , Fuso Acromático/fisiologia , Proteína ran de Ligação ao GTP/fisiologia , Animais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mitose/fisiologia , Modelos Biológicos , Transdução de Sinais , Xenopus , Proteínas de Xenopus , Proteína ran de Ligação ao GTP/genética
9.
Biochem J ; 410(3): 495-502, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18031287

RESUMO

The current paradigm is that integrin is activated via inside-out signalling when its cytoplasmic tails and TMs (transmembrane helices) are separated by specific cytosolic protein(s). Perturbations of the helical interface between the alpha- and beta-TMs of an integrin, as a result of mutations, affect its function. Previous studies have shown the requirement for specific pairing between integrin subunits by ectodomain-exchange analyses. It remains unknown whether permissive alpha/beta-TM pairing of an integrin is also required for pairing specificity and the expression of a functionally regulated receptor. We performed scanning replacement of integrin beta2-TM with a TM of other integrin beta-subunits. With the exception of beta4 substitution, others presented beta2-integrins with modified phenotypes, either in their expression or ligand-binding properties. Subsequently, we adopted alphaLbeta2 for follow-on experiments because its conformation and affinity-state transitions have been well defined as compared with other members of the beta2-integrins. Replacement of beta2- with beta3-TM generated a chimaeric alphaLbeta2 of an intermediate affinity that adhered to ICAM-1 (intercellular adhesion molecule 1) but not to ICAM-3 constitutively. Replacing alphaL-TM with alphaIIb-TM, forming a natural alphaIIb/beta3-TM pair, reversed the phenotype of the chimaera to that of wild-type alphaLbeta2. Interestingly, the replacement of alphaLbeta2- with beta3-TM showed neither an extended conformation nor the separation of its cytoplasmic tails, which are well-reported hallmarks of an activated alphaLbeta2, as determined by reporter mAb (monoclonal antibody) KIM127 reactivity and FRET (fluorescence resonance energy transfer) measurements respectively. Collectively, our results suggest that TM pairing specificity is required for the expression of a functionally regulated integrin.


Assuntos
Integrinas/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular , DNA Complementar , Dimerização , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , Integrinas/química , Proteínas de Membrana/química , Plasmídeos , Ligação Proteica , Conformação Proteica
10.
J Cell Biochem ; 105(3): 835-46, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18712773

RESUMO

Mitotic catastrophe is a form of cell death that results from aberrant mitosis. Currently, the mechanisms involved in this form of cell death remain poorly understood. We found that actinomycin D induces mitotic catastrophe with severe spindle assembly defects. We have studied the nature of three groups of chromosome binding proteins in mitotic cells treated with actinomycin D. We found that actinomycin D reduced the binding affinity of RCC1 to the mitotic chromosome, which led to a reduction of RanGTP level. In addition, Mad2 was not concentrated at the kinetochores, indicating that the mitotic spindle checkpoint was affected. Furthermore, the localization of survivin was altered in cells. These data suggested that chromosomal binding of the mitotic regulators such as RCC1, Mad2 and survivin is essential for mitotic progression. Mitotic chromosomes not only carry the genetic material needed for the newly synthesized daughter cells, but also serve as docking sites for some of the mitotic regulators. Perturbation of their binding to the mitotic chromosome by actinomycin D could affect their functions in regulating mitotic progression thus leading to severe spindle defects and mitotic catastrophe.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fuso Acromático/metabolismo , Sítios de Ligação , Dactinomicina/farmacologia , Transferência Ressonante de Energia de Fluorescência , Imunofluorescência , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose , Cinetocoros/metabolismo , Proteínas Mad2 , Proteínas Associadas aos Microtúbulos/análise , Proteínas de Neoplasias/análise , Survivina
11.
Open Biol ; 8(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925632

RESUMO

Abnormal centrosome number and function have been implicated in tumour development. LIM kinase1 (LIMK1), a regulator of actin cytoskeleton dynamics, is found to localize at the mitotic centrosome. However, its role at the centrosome is not fully explored. Here, we report that LIMK1 depletion resulted in multi-polar spindles and defocusing of centrosomes, implicating its involvement in the regulation of mitotic centrosome integrity. LIMK1 could influence centrosome integrity by modulating centrosomal protein localization at the spindle pole. Interestingly, dynein light intermediate chains (LICs) are able to rescue the defects observed in LIMK1-depleted cells. We found that LICs are potential novel interacting partners and substrates of LIMK1 and that LIMK1 phosphorylation regulates cytoplasmic dynein function in centrosomal protein transport, which in turn impacts mitotic spindle pole integrity.


Assuntos
Centrossomo/metabolismo , Dineínas/metabolismo , Quinases Lim/genética , Quinases Lim/metabolismo , Citoplasma/metabolismo , Células HeLa , Humanos , Mitose , Fosforilação , Transporte Proteico , Fuso Acromático/metabolismo , Polos do Fuso/metabolismo
12.
Nat Commun ; 9(1): 5076, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498228

RESUMO

The slow and promiscuous properties of the CO2-fixing enzyme Rubisco constrain photosynthetic efficiency and have prompted the evolution of powerful CO2 concentrating mechanisms (CCMs). In eukaryotic microalgae a key strategy involves sequestration of the enzyme in the pyrenoid, a liquid non-membranous compartment of the chloroplast stroma. Here we show using pure components that two proteins, Rubisco and the linker protein Essential Pyrenoid Component 1 (EPYC1), are both necessary and sufficient to phase separate and form liquid droplets. The phase-separated Rubisco is functional. Droplet composition is dynamic and components rapidly exchange with the bulk solution. Heterologous and chimeric Rubiscos exhibit variability in their tendency to demix with EPYC1. The ability to dissect aspects of pyrenoid biochemistry in vitro will permit us to inform and guide synthetic biology ambitions aiming to engineer microalgal CCMs into crop plants.


Assuntos
Microalgas/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimologia , Cloroplastos/metabolismo , Fotossíntese/fisiologia
13.
iScience ; 8: 1-14, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30266032

RESUMO

We double-tagged Xist (inactivated X chromosome-specific transcript), a prototype long non-coding RNA pivotal for X chromosome inactivation (XCI), using the programmable RNA sequence binding domain of Pumilio protein, one tag for live-cell imaging and the other replacing A-repeat (a critical domain of Xist) to generate "ΔA mutant" and to tether effector proteins for dissecting Xist functionality. Based on the observation in live cells that the induced XCI in undifferentiated embryonic stem (ES) cells is counteracted by the intrinsic X chromosome reactivation (XCR), we identified Kat8 and Msl2, homologs of Drosophila dosage compensation proteins, as players involved in mammalian XCR. Furthermore, live-cell imaging revealed the obviously undersized ΔA Xist cloud signals, clarifying an issue regarding the previous RNA fluorescence in situ hybridization results. Tethering candidate proteins onto the ΔA mutant reveals the significant roles of Ythdc1, Ezh2, and SPOC (Spen) in Xist-mediated gene silencing and the significant role of Ezh2 in Xist RNA spreading.

15.
Cell Cycle ; 13(15): 2459-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483195

RESUMO

Proper centrosome positioning is critical for many cellular functions, such as cell migration and maintenance of polarity. During wound healing, fibroblasts orient their centrosomes such that they face the wound edge. The centrosome orientation determines the direction of cells' migration so that they can close the wound effectively. In this study, we investigated the regulation of centrosome polarization and have identified the phosphatase POPX2 as an important regulator of centrosome orientation. We found that POPX2 inhibits centrosome centration, but not rearward nuclear movement, by regulating multiple proteins that function in centrosome positioning. High POPX2 levels result in reduced motility of the kinesin-2 motor, which, in turn, inhibits the transport of N-cadherin to the cell periphery and cell junctions. Loss of N-cadherin localization to the cell membrane affects the localization of focal adhesions and perturbs CDC42-Par6/PKCζ signaling. In addition, overexpression of POPX2 also results in a loss of Par3 localization to the cell periphery and reduced levels of LIC2 (dynein light intermediate chain 2), leading to defects in microtubule tethering and dynamics at cell-cell contacts. Therefore, POPX2 functions as a regulator of signaling pathways to modulate the positioning of centrosome in fibroblast during wound healing.


Assuntos
Polaridade Celular/fisiologia , Centrossomo/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular , Movimento Celular/fisiologia , Cinesinas/metabolismo , Camundongos , Centro Organizador dos Microtúbulos/metabolismo , Células NIH 3T3 , Fosforilação , Proteína cdc42 de Ligação ao GTP/metabolismo
16.
PLoS One ; 7(9): e45836, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029267

RESUMO

Under the fluctuating circumstances provided by the innate dynamics of microtubules and opposing tensions resulted from microtubule-associated motors, it is vital to ensure stable kinetochore-microtubule attachments for accurate segregation. However, a comprehensive understanding of how this regulation is mechanistically achieved remains elusive. Using our newly designed live cell FRET time-lapse imaging, we found that post-metaphase RanGTP is crucial in the maintenance of stable kinetochore-microtubule attachments by regulating Aurora B kinase via the NES-bearing Mst1. More importantly, our study demonstrates that by ensuring stable alignment of metaphase chromosomes prior to segregation, RanGTP is indispensible in governing the genomic integrity and the fidelity of cell cycle progression. Our findings suggest an additional role of RanGTP beyond its known function in mitotic spindle assembly during the prometaphase-metaphase transition.


Assuntos
Cinetocoros/enzimologia , Microtúbulos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína ran de Ligação ao GTP/fisiologia , Animais , Aurora Quinase B , Aurora Quinases , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Mamíferos/metabolismo , Cricetinae , Transferência Ressonante de Energia de Fluorescência , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Carioferinas/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Metáfase , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/metabolismo , Imagem com Lapso de Tempo , Proteína ran de Ligação ao GTP/metabolismo , Proteína Exportina 1
17.
Cell Cycle ; 11(10): 1938-47, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22544322

RESUMO

RUNX family proteins are critical regulators of lineage differentiation during development. The high prevalence of RUNX mutation/epigenetic inactivation in human cancer indicates a causative role for dysfunctional RUNX in carcinogenesis. This is supported by well-documented evidence of functional interaction of RUNX with components of major oncogenic or tumor suppressive signaling pathways such as TGFß and Wnt. Here, we explore the binding partners of RUNX3 proteins to further define the scope of RUNX3 function. Using a mass spectrometry-based approach, we found that RUNX3 binds to centrosomal protein rootletin. This led us to uncover the presence of RUNX proteins at the centrosome. Our findings suggest a potential function for RUNX3 during mitosis.


Assuntos
Centrossomo/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Subunidade alfa 1 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Proteínas do Citoesqueleto/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Espectrometria de Massas , Mitose , Nocodazol/farmacologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Tubulina (Proteína)/metabolismo , Proteínas Wnt/metabolismo
18.
Nat Cell Biol ; 11(1): 36-45, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19060893

RESUMO

A number of signalling pathways have been identified that regulate apoptosis, but the mechanism that initiates apoptosis remains incompletely understood. We have found that the nuclear RanGTP level is diminished during the early stages of apoptosis, which correlates with immobilization of RCC1 on the chromosomes. Furthermore, the expression of phosphomimetic histone H2B or caspase-activated Mst1 immobilizes RCC1 and causes reduction of nuclear RanGTP levels, which leads to inactivation of the nuclear transport machinery. As a consequence, nuclear localization signal (NLS)-containing proteins, including NF-kappaB-p65, remain bound to importins alpha and beta in the cytoplasm. Knocking down Mst1 allows resumption of nuclear transport and the nuclear entry of NF-kappaB-p65, which have important roles in rescuing cells from apoptosis. Therefore, we propose that RCC1 reads the histone code created by caspase-activated Mst1 to initiate apoptosis by reducing the level of RanGTP in the nucleus.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Apoptose/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Cromossomos/genética , Cromossomos/metabolismo , Regulação para Baixo/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Proteína ran de Ligação ao GTP/genética
19.
J Biol Chem ; 283(17): 11453-60, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18305112

RESUMO

Although the tumor suppressor ARF is generally accepted for its essential role in activating the p53 pathway, its p53-independent function has also been proposed. Here, we report that ARF associates with COMMD1 and promotes Lys(63)-mediated polyubiquitination of COMMD1 in a p53-independent manner. We found that ARF interacts with COMMD1 in vivo. Deletion analysis of ARF suggested that the N-terminal amino acids 15-45 are important for its interaction with COMMD1. In addition, we found that endogenous ARF redistributes from the nucleolus to the nucleoplasm and interacts with COMMD1 when DNA is damaged by actinomycin D. Interestingly, we found that ARF promotes the polyubiquitination of COMMD1 through Lys(63) of ubiquitin but not the polyubiquitination of Lys(48), which does not target COMMD1 for proteasome-dependent proteolysis. Moreover, ARF mutants lacking the domain interacting with COMMD1 did not promote COMMD1 polyubiquitination, indicating that physical association is a prerequisite condition for the polyubiquitination process. Together, these data suggest that the ability to promote Lys(63)-mediated polyubiquitination of COMMD1 is a novel property of ARF independent of p53.


Assuntos
Proteínas de Transporte/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Dano ao DNA , Dactinomicina/farmacologia , Técnica Indireta de Fluorescência para Anticorpo , Deleção de Genes , Humanos , Lisina/química , Modelos Biológicos , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/metabolismo
20.
Genes Dev ; 18(5): 512-27, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15014043

RESUMO

Spindle assembly is subject to the regulatory controls of both the cell-cycle machinery and the Ran-signaling pathway. An important question is how the two regulatory pathways communicate with each other to achieve coordinated regulation in mitosis. We show here that Cdc2 kinase phosphorylates the serines located in or near the nuclear localization signal (NLS) of human RCC1, the nucleotide exchange factor for Ran. This phosphorylation is necessary for RCC1 to generate RanGTP on mitotic chromosomes in mammalian cells, which in turn is required for spindle assembly and chromosome segregation. Moreover, phosphorylation of the NLS of RCC1 is required to prevent the binding of importin alpha and beta to RCC1, thereby allowing RCC1 to couple RanGTP production to chromosome binding. These findings reveal that the cell-cycle machinery directly regulates the Ran-signaling pathway by placing a high RanGTP concentration on the mitotic chromosome in mammalian cells.


Assuntos
Proteínas de Ciclo Celular , Cromossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Mitose , Proteínas Nucleares , Fuso Acromático/metabolismo , Proteína ran de Ligação ao GTP/biossíntese , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Segregação de Cromossomos , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Carioferinas/antagonistas & inibidores , Sinais de Localização Nuclear , Fosforilação , Receptor Cross-Talk , Transdução de Sinais , Transfecção , Xenopus , Proteínas de Xenopus , Proteína ran de Ligação ao GTP/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA