Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Clin Microbiol Antimicrob ; 22(1): 57, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430367

RESUMO

BACKGROUND: Acquired immunodeficiency syndrome (AIDS) is associated with a high rate of pulmonary infections (bacteria, fungi, and viruses). To overcome the low sensitivity and long turnaround time of traditional laboratory-based diagnostic strategies, we adopted metagenomic next-generation sequencing (mNGS) technology to identify and classify pathogens. RESULTS: This study enrolled 75 patients with AIDS and suspected pulmonary infections who were admitted to Nanning Fourth People's Hospital. Specimens were collected for traditional microbiological testing and mNGS-based diagnosis. The diagnostic yields of the two methods were compared to evaluate the diagnostic value (detection rate and turn around time) of mNGS for infections with unknown causative agent. Accordingly, 22 cases (29.3%) had a positive culture and 70 (93.3%) had positive valve mNGS results (P value < 0.0001, Chi-square test). Meanwhile, 15 patients with AIDS showed concordant results between the culture and mNGS, whereas only one 1 patient showed concordant results between Giemsa-stained smear screening and mNGS. In addition, mNGS identified multiple microbial infections (at least three pathogens) in almost 60.0% of patients with AIDS. More importantly, mNGS was able to detect a large variety of pathogens from patient tissue displaying potential infection and colonization, while culture results remained negative. There were 18 members of pathogens which were consistently detected in patients with and without AIDS. CONCLUSIONS: In conclusion, mNGS analysis provides fast and precise pathogen detection and identification, contributing substantially to the accurate diagnosis, real-time monitoring, and treatment appropriateness of pulmonary infection in patients with AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida , Pneumonia , Humanos , Síndrome da Imunodeficiência Adquirida/complicações , Sequenciamento de Nucleotídeos em Larga Escala , Corantes Azur , Hospitalização , Hospitais
2.
Cell Physiol Biochem ; 47(1): 316-329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768259

RESUMO

BACKGROUND/AIMS: The rejuvenation properties of nanofat grafting have been described in recent years. However, it is not clear whether the clinical efficacy of the procedure is attributable to stem cells or linked to other components of adipose tissue. In this study we isolated nanofat-derived stem cells (NFSCs) to observe their biological characteristics and evaluate the efficacy of precise intradermal injection of nanofat combined with platelet-rich fibrin (PRF) in patients undergoing facial rejuvenation treatment. METHODS: Third-passage NFSCs were isolated and cultured using a mechanical emulsification method and their surface CD markers were analyzed by flow cytometry. The adipogenic and osteogenic nature and chondrogenic differentiation capacity of NFSCs were determined using Oil Red O staining, alizarin red staining, and Alcian blue staining, respectively. Paracrine function of NFSCs was evaluated by enzyme-linked immunosorbent assay (ELISA) at 1, 3, 7, 14, and 28 days after establishing the culture. Then, the effects of PRF on NFSC proliferation were assessed in vitro. Finally, we compared the outcome in 103 patients with facial skin aging who underwent both nanofat and intradermal PRF injection (treatment group) and 128 patients who underwent hyaluronic acid (HA) injection treatment (control group). Outcomes in the two groups were compared by assessing pictures taken at the same angle before and after treatment, postoperative recovery, incidence of local absorption and cysts, and skin quality before treatment, and at 1, 12, 24 months after treatment using the VISIA Skin Image Analyzer and a SOFT5.5 skin test instrument. RESULTS: NFSCs expressed CD29, CD44, CD49d, CD73, CD90, and CD105, but did not express CD34, CD45, and CD106. NFSCs also differentiated into adipocytes, osteoblasts, and chondrocytes under appropriate induction conditions. NFSCs released large amounts of growth factors such as VEGF, bFGF, EGF, and others, and growth factor levels increased in a time-dependent manner. At the same time, PRF enhanced proliferation of NFSCs in vitro in a dose-dependent manner, and the growth curves under different concentrations of PRF all showed plateaus 6d after seeding. Facial skin texture was improved to a greater extent after combined injection of nanofat and PRF than after control injection of HA. The nanofat-PRF group had a higher satisfaction rate. Neither treatment caused any complications such as infection, anaphylaxis, or paresthesia during long-term follow-up. CONCLUSION: NFSCs demonstrate excellent multipotential differentiation and paracrine function, and PRF promotes proliferation of NFSCs during the early stage after seeding. Both nanofat-PRF and HA injection improve facial skin status without serious complications, but the former was associated with greater patient satisfaction, implying that nanofat-PRF injection is a safe, highly effective, and long-lasting method for skin rejuvenation.


Assuntos
Tecido Adiposo/citologia , Fibrina Rica em Plaquetas/metabolismo , Rejuvenescimento , Envelhecimento da Pele , Fenômenos Fisiológicos da Pele , Células Estromais/citologia , Células Estromais/transplante , Adulto , Proliferação de Células , Células Cultivadas , Face , Feminino , Humanos , Injeções Intradérmicas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade , Células Estromais/metabolismo , Adulto Jovem
3.
Cell Physiol Biochem ; 37(5): 1890-902, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26584288

RESUMO

BACKGROUND/AIMS: Investigating and understanding chondrogenic gene expression during the differentiation of human breast adipose-derived stem cells (HBASCs) into chondrogenic cells is a prerequisite for the application of this approach for cartilage repair and regeneration. In this study, we aim to characterize HBASCs and to examine chondrogenic gene expression in chondrogenic inductive culture medium containing ginsenoside Rg1. METHODS: Human breast adipose-derived stem cells at passage 3 were evaluated based on specific cell markers and their multilineage differentiation capacity. Cultured HBASCs were treated either with basic chondrogenic inductive conditioned medium alone (group A, control) or with basic chondrogenic inductive medium plus 10 µg/ml (group B), 50 µg/ml (group C), or 100µg/ml ginsenoside Rg1 (group D). Cell proliferation was assessed using the CCK-8 assay for a period of 9 days. Two weeks after induction, the expression of chondrogenic genes (collagen type II, collagen type XI, ACP, COMP and ELASTIN) was determined using real-time PCR in all groups. RESULTS: The different concentrations of ginsenoside Rg1 that were added to the basic chondrogenic inductive culture medium promoted the proliferation of HBASCs at earlier stages (groups B, C, and D) but resulted in chondrogenic phenotype differentiation and higher mRNA expression of collagen type II (CO-II), collagen type XI (CO-XI), acid phosphatase (ACP), cartilage oligomeric matrix protein (COMP) and ELASTIN compared with the control (group A) at later stages. The results reveal an obvious positive dose-effect relationship between ginsenoside Rg1 and the proliferation and chondrogenic phenotype differentiation of HBASCs in vitro. CONCLUSIONS: Human breast adipose-derived stem cells retain stem cell characteristics after expansion in culture through passage 3 and serve as a feasible source of cells for cartilage regeneration in vitro. Chondrogenesis in HBASCs was found to be prominent after chondrogenic induction in conditions containing ginsenoside Rg1.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Ginsenosídeos/farmacologia , Células-Tronco/citologia , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Tecido Adiposo/citologia , Antígenos CD/metabolismo , Mama/citologia , Cartilagem/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/genética , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo IX/genética , Colágeno Tipo IX/metabolismo , Meios de Cultivo Condicionados/farmacologia , Elastina/genética , Elastina/metabolismo , Feminino , Humanos , Imunofenotipagem , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
4.
Cell Physiol Biochem ; 34(6): 2091-104, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25562157

RESUMO

BACKGROUND: The main complication of autologous free fat tissue transplantation is fat resorption and calcification due to the ischemic necrosis of fat. The promotion of transplant neovascularization soon after autologous free fat grafts may reduce these outcomes. In adulthood, stromal cell-derived factor-1 (SDF-1) and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4) are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. We hypothesized that CXCR4 may improve the long-term survival of free fat tissue transplants by recruiting endothelial progenitor cells (EPCs) and may therefore improve graft revascularization. In this study, we aimed to determine the effect of human breast adipose-derived stem cells (HBASCs) transfected with the CXCR4 gene on the survival rate of human autologous free fat transplants in nude mice. METHODS: Human breast adipose-derived stem cells (HBASCs) were expanded ex vivo for 3 passages, labeled with green fluorescent protein (GFP) and transfected with CXCR4 or left untransfected. Autologous fat tissues were mixed with the GFP-labeled, CXCR4-transfected HBASCs (group A), GFP-labeled HBASCs (group B), the known vascularization-promoting agent VEGF (group C), or medium (group D) and then injected subcutaneously into 32 nude mice at 4 spots in a random fashion. Six months later, the transplanted tissue volume and histology were evaluated, and neo-vascularization was quantified by counting the capillaries. CXCR4 and SDF-1α mRNA expression in the transplants was determined using real-time quantitative PCR analysis (qPCR). RESULTS: The data revealed that the control (group D) transplant volume survival was 28.3 ± 4.5%. Mixing CXCR4-transfected (group A) and untransfected (group B) HBASCs significantly increased transplant volume survival (79.5 ± 8.3% and 67.2 ± 5.9%, respectively), whereas VEGF-transfected HBASCs (group C) were less effective (41.2 ± 5.1%). Histological analysis revealed that both types of HBASCs-treated transplants consisted predominantly of adipose tissue, unlike the control transplants, and also presented significantly less fat necrosis and fibrosis. The CXCR4-transfected HBASCs-treated transplants had a significantly higher capillary density than did the other transplants and showed GFP and CD31 double-positive cells (i.e., ASCs-derived endothelial cells). The mRNA expression of CXCR4 and SDF-1α was much higher in the CXCR4-transfected HBASCs transplants than in the other three transplants. CONCLUSIONS: Our data demonstrated that HBASCs can enhance the survival and quality of transplanted free fat tissues. Moreover, CXCR4 transfection of these HBASCs could augment this effect. Stimulation of angiogenesis and decreased fat cell apoptosis due to the recruitment of endothelial progenitor cells (EPCs) and an increase in graft revascularization are potential mechanisms underlying the improved long-term survival of free fat transplants following CXCR4-transfected HBASCs treatment.


Assuntos
Proliferação de Células/genética , Receptores CXCR4/metabolismo , Transplante de Células-Tronco , Células Estromais/citologia , Transplante Autólogo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Apoptose/genética , Mama/citologia , Sobrevivência Celular/genética , Quimiocina CXCL12/genética , Sobrevivência de Enxerto , Humanos , Camundongos
5.
Can J Physiol Pharmacol ; 92(6): 467-75, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24873669

RESUMO

AIMS: To investigate whether ginsenoside Rg1 can promote neural phenotype differentiation of human adipose-derived stem cells (hASCs) in vitro. METHODS: hASCs were isolated from lipo-aspirates, and characterized by specific cell markers and multilineage differentiation capacity after culturing to the 3rd passage. Cultured hASCs were treated with neural inductive media alone (group A, control) or inductive media plus 10, 50, or 100 µg/mL ginsenoside Rg1 (groups B, C, and D, respectively). Cell proliferation was assessed by CCK-8 assay. Neuron specific enolase (NSE) and microtubule-associated protein-2 (MAP-2) levels were measured by Western blot. mRNA levels of growth associated protein-43 (GAP-43), neural cell adhesion molecule (NCAM), and synapsin-1 (SYN-1) were determined by real-time PCR. RESULTS: Ginsenoside Rg1 promoted the proliferation of hASCs (groups B, C, and D) and resulted in higher expression of NSE and MAP-2 compared with the control group. Gene expression levels of GAP-43, NCAM, and SYN-1 in the test groups were higher than that in thw control. The results displayed a dose-dependent effect of ginsenoside Rg1 on cell proliferation and neural phenotype differentiation. CONCLUSION: This study indicated that ginsenoside Rg1 promotes cell proliferation and neural phenotype differentiation of hASCs in vitro, suggesting a potential use for hASCs in neural regeneration medicine.


Assuntos
Adipócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Ginsenosídeos/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco/metabolismo
6.
Int J Neurosci ; 123(3): 184-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23126279

RESUMO

Nervous system injury causes severe medical and social problems worldwide, and doctors have not found any ultimate solutions to it until now. The regenerative medicine using stem cells is a promising technology to conquer this challenge. In this study, we explored the influence of platelet-rich plasma (PRP) on neural differentiation of adipose-derived stem cells (ASCs). Human ASCs (hASCs) were harvested and isolated from lipoaspirates of liposuction operations. They were cultured to the third passage and characterized by specific cell markers and multilineage differentiation capacities. Autologous PRP was isolated and prepared from venous blood of the same patient underwent liposuction. The cultured hASCs were treated with either neural inductive conditioned medium plus 10% PRP (experimental group) or neural inductive conditioned medium alone (control group). The supplement of autologous PRP into culture medium obviously promoted proliferation of hASCs. After two weeks of neurogenic induction, the hASCs treated with PRP displayed higher level of neuron-specific enolase and membrane-associated protein-2 compared with the control group. Gene expression level of growth associated protein-43 (GAP-43), neural cell adhesion molecule (NCAM), and synapsin 1 (SYN-1) in the PRP group was also higher than in the control group. These results indicate PRP is capable of promoting cell proliferation and neurogenic differentiation of hASCs in vitro. Addition of autologous PRP could facilitate the potential use of hASCs in nerve regeneration.


Assuntos
Adipócitos/fisiologia , Células-Tronco Adultas/fisiologia , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Plasma Rico em Plaquetas/fisiologia , Adipócitos/citologia , Células-Tronco Adultas/citologia , Proliferação de Células , Células Cultivadas , Humanos , Regeneração Nervosa/fisiologia
7.
Biomed Pharmacother ; 164: 114881, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37210895

RESUMO

Osteoarthritis (OA) is considered to be the most common joint disorder. Exogenous drug intervention is one of the effective means for OA treatment. Clinical applications of numerous drugs are restricted owing to the short retention as well as rapid clearance in the joint cavity. A wide variety of carrier-based nanodrugs have been developed, but additional carriers may bring unexpected side effects or even toxicity. Herein, by exploiting the spontaneous fluorescence of Curcumin, we designed a new carrier-free self-assembly nanomedicine Curcumin (Cur)/icariin (ICA) nanoparticles with adjustable particle size, which is composed of two small-molecule natural drugs assembled via π-π stacking interaction. Experimental results revealed that Cur/ICA NPs endowed with little cytotoxicity, high cellular uptake and sustained drug release, could inhibit secretion of inflammatory cytokines and reduce cartilage degeneration. Moreover, both the in vitro and in vivo experiments showed the NPs exerted superior synergism effects in anti-inflammatory and cartilage protection than either Cur or ICA alone, and self-monitored its retention by autofluorescence. Thus, the new self-assembly nano-drug combining Cur and ICA represents a new strategy for the treatment of osteoarthritis.


Assuntos
Curcumina , Nanopartículas , Osteoartrite , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/uso terapêutico , Osteoartrite/tratamento farmacológico , Tamanho da Partícula
8.
Stem Cells Int ; 2023: 8282961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197688

RESUMO

Chronic refractory wounds (CRW) are one of the most serious clinical challenges for surgeons to address. Stromal vascular fraction gels (SVFG), including human adipose stem cells (hASCs), have excellent vascular regenerative and tissue repair properties. Here, we combined single-cell RNA sequencing (scRNA-seq) of leg subcutaneous adipose tissue samples with scRNA-seq data from abdominal subcutaneous adipose tissue, leg subcutaneous adipose tissue, and visceral adipose tissue samples from public databases. The results showed specific differences in cellular levels in adipose tissue from different anatomical site sources. We identified cells including CD4+ T cells, hASCs, adipocyte (APC), epithelial (Ep) cells, and preadipocyte. In particular, the dynamics between groups of hASCs, epithelial cells, APCs, and precursor cells in adipose tissue of different anatomical site origins were more significant. Furthermore, our analysis reveals alterations at the cellular level and molecular level, as well as the biological signaling pathways involved in these subpopulations of cells with specific alterations. In particular, certain subpopulations of hASCs have higher cell stemness, which may be related to lipogenic differentiation capacity and may be beneficial in promoting CRW treatment and healing. In general, our study captures a human single-cell transcriptome profile across adipose depots, the cell type identification and analysis of which may help dissect the function and role of cells with specific alterations present in adipose tissue and may provide new ideas and approaches for the treatment of CRW in the clinical setting.

9.
Curr Stem Cell Res Ther ; 18(1): 127-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34872484

RESUMO

BACKGROUND: Advanced platelet-rich fibrin extract (APRFE) contains a high concentration of various cytokines that are helpful for improving stem cells repair function. OBJECTIVE: However, the underlying mechanism of APRFE improving stem cell repairing is not clear. METHODS: We produced APRFE by centrifuging fresh peripheral blood samples and isolated and identified human adipose-derived mesenchymal stem cells (ADMSCs). The abundance of cytokines contained in APRFE was detected by the Enzyme-linked immunosorbent assay (ELISA). The ADMSCs treated with or without APRFE were collected for transcriptome sequencing. RESULTS: Based on the sequencing data, the expression profiles were contracted. The differentially expressed genes and lncRNA (DEGs and DElncRNAs) were obtained using for the differential expression analysis. The lncRNA-miRNA-mRNA network was constructed based on the miRNet database. The further enrichment analysis results showed that the biological functions were mainly related to proliferation, differentiation, and cell-cell function. To explore the role of APRFE, the protein-protein interaction network was constructed among the cytokines included in APRFE and DEGs. Furthermore, we constructed the global regulatory network based on the RNAInter and TRRUST database. The pathways in the global regulatory network were considered as the core pathways. We found that the DEGs in the core pathways were associated with stemness scores. CONCLUSION: In summary, we predicted that APRFE activated three pathways (tryptophan metabolism, mTOR signaling pathway, and adipocytokine signaling) to promote the proliferation and differentiation of ADMSCs. The finding may be helpful for guiding the application of ADMSCs in the clinic.


Assuntos
Células-Tronco Mesenquimais , Fibrina Rica em Plaquetas , RNA Longo não Codificante , Humanos , Triptofano/farmacologia , Diferenciação Celular/genética , Citocinas/genética , Proliferação de Células
10.
Ann Transl Med ; 10(2): 60, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35282074

RESUMO

Background: The micro-autologous fat transplantation (MAFT) technique has demonstrated its feasibility in multiple medical fields, such as facial rejuvenation. Advanced platelet-rich fibrin (APRF), an autologous platelet concentrated on a fibrin membrane without added external factors, has shown significant potential for tissue restoration. However, the role of APRF in the modulation of MAFT remains unclear. Here, we aimed to explore the effect of APRF on MAFT. Methods: Adipose-derived stem cells (ASCs) were isolated from human gastric subcutaneous fat and treated with APRF. ELISA assays measured cytokines. The proliferation of ASCs was analyzed by CCK-8 assays. The levels of hypoxia-inducible factor-1α (HIF-1α), heat shock protein 70 (HSP70), insulin like growth factor 2 (IGF-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) were measured by ELISA assays, quantitative reverse transcription-PCR (qRT-PCR), and Western blot analysis. The effect of APRF/HIF-1α/VEGF on MAFT in vivo was analyzed in Balb/c nude mice. The BALB/c mice were subcutaneously co-transplanted with fat, APRF, and control shRNA, HIF-1α shRNA, or VEGF shRNA into the dorsal area. The serum and protein levels of the above cytokines were analyzed by ELISA assays and Western blot analysis. Lipid accumulation was measured by Oil Red O staining. The expression of CD34 was assessed by immunohistochemical staining. Results: APRF continuously secreted multiple cytokines, including epidermal growth factor (EGF), FGF-2, insulin like growth factor 1 (IGF-1), interleukin-1beta (IL-1ß), interleukin-4 (IL-4), platelet-derived growth factor alpha polypeptide b (PDGF-AB), platelet-derived growth factor beta polypeptide b (PDGF-BB), transforming growth factor-beta (TGF-ß), and VEGF. APRF was able to promote the proliferation of ASCs. APRF dose-dependently activated the expression of HIF-1α, HSP70, IGF-2, IL-6, IL-8, and VEGF in ASCs. APRF regulated the paracrine function of ASCs by modulating HIF-1α and VEGF. APRF increased the survival of MAFT by modulating HIF-1α and VEGF in vivo. Conclusions: APRF promotes the paracrine function and proliferation of ASCs and contributes to MAFT by modulating HIF-1α and VEGF. Our findings provide new insights into the mechanism by which APRF regulates MAFT.

11.
J Oncol ; 2022: 4984866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35027924

RESUMO

BACKGROUND: Studies have found that the abnormality of the Hedgehog signaling pathway is related to the occurrence and development of a variety of tumors, but the effect of this signaling pathway on melanoma cells is still unclear. METHODS: This study aimed to discuss the effect of Hedgehog signaling pathway on the proliferation and apoptosis of human malignant melanoma A375 cells and explore its possible mechanism in the proliferation and apoptosis of melanoma cells. Different concentrations of Hedgehog signaling pathway inhibitor cyclopamine (5, 10, 20 and 40 µM) were used to treat human melanoma A375 cells for 24, 48, and 72 h, and set a blank control group (0 µM). Trypan blue cell counting method was used to detect cell viability. MTT method was used to detect the inhibition rate of cell proliferation. Transwell was used to detect cell invasion, and flow cytometry was used to detect cell apoptosis. RESULTS: Through the trypan blue cell counting method and MTT experiment, it was found that the Hedgehog signaling pathway inhibitor cyclopamine has an inhibitory effect on the proliferation and viability of melanoma A375 cells (P < 0.05), and the proliferation inhibitory effect is enhanced with prolonged action time in a dose- and time-dependent manner. Transwell experiment showed that compared with the blank control group, the invasion and migration ability of the treated melanoma A375 cells are significantly reduced, and the difference is statistically significant (P < 0.05). Cell apoptosis experiment showed that compared with the blank control group, the apoptosis rate of A375 cells is significantly higher after treated by 40 µM cyclopamine for 24 h, and the difference is statistically significant (P < 0.05). Gli1 and Bcl-2 protein are highly expressed in melanoma A375 cells, and their expressions show a downward trend (P < 0.05) after being treated by cyclopamine. CONCLUSION: Cyclopamine inhibits cell proliferation and induces cell apoptosis by downregulating Gli1. Hedgehog signaling pathway can be used as a new target for the treatment of malignant melanoma, and multiple measures can be used to inhibit the signaling pathway to achieve a therapeutic effect.

12.
Ann Med ; 54(1): 314-325, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35068272

RESUMO

BACKGROUND: Therapeutic studies against human immunodeficiency virus type 1 (HIV-1) infection have become one of the important works in global public health. METHODS: Differential expression analysis was performed between HIV-positive (HIV+) and HIV-negative (HIV-) patients for GPL6947 and GPL10558 of GSE29429. Coexpression analysis of common genes with the same direction of differential expression identified modules. Module genes were subjected to enrichment analysis, Short Time-series Expression Miner (STEM) analysis, and PPI network analysis. The top 100 most connected genes in the PPI network were screened to construct the LASSO model, and AUC values were calculated to identify the key genes. Methylation modification of key genes were identified by the chAMP package. Differences in immune cell infiltration between HIV + and HIV- patients, as well as between antiretroviral therapy (ART) and HIV + patients, were calculated using ssGSEA. RESULTS: We obtained 3610 common genes, clustered into nine coexpression modules. Module genes were significantly enriched in interferon signalling, helper T-cell immunity, and HIF-1-signalling pathways. We screened out module genes with gradual changes in expression with increasing time from HIV enrolment using STEM software. We identified 12 significant genes through LASSO regression analysis, especially proteasome 20S subunit beta 8 (PSMB8) and interferon alpha inducible protein 27 (IFI27). The expression of PSMB8 and IFI27 were then detected by quantitative real-time PCR. Interestingly, IFI27 was also a persistently dysregulated gene identified by STEM. In addition, 10 of the key genes were identified to be modified by methylation. The significantly infiltrated immune cells in HIV + patients were restored after ART, and IFI27 was significantly associated with immune cells. CONCLUSION: The above results provided potential target genes for early diagnosis and treatment of HIV + patients. IFI27 may be associated with the progression of HIV infection and may be a powerful target for immunotherapy.


Assuntos
Infecções por HIV , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/uso terapêutico
13.
Ann Transl Med ; 10(17): 933, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36172108

RESUMO

Background: To evaluate the effect of highly purified stromal vascular fraction gel (SVFG) combined with advanced platelet-rich fibrin extract (APRFE) in treatment of irradiated skin and soft tissue injury. Methods: The subcutaneous fat and whole blood of 4 rabbits were collected to isolate the SVFG and APRFE, respectively. Forty-eight rabbits were divided into 4 groups to prepare irradiated skin injury models with 25 Gy for 24 hours; corresponding dose were performed subcutaneously injected into wounds. In group A, the rabbits were treated with 0.3 mL APRFE combined with 1 mL SVFG. In group B, the rabbits were treated with 1 mL SVFG. In group C, the rabbits were treated with 0.3 mL APRFE, and group D was treated with 1 mL normal saline. The wound healing was detected on the 2, 5, 9 and 14 d after intervention. The wounds tissue was cut for hematoxylin and eosin (HE) staining to observe the structure and Masson staining to observe the collagen content. The expression of CD31 in each group was detected by immunohistochemistry (IHC), the protein and mRNA levels of K19, hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), interleukin 8 (IL-8) and interleukin 10 (IL-10) were detected respectively by Western blot (WB) and reverse transcription-polymerase chain reaction (RT-PCR) on 7, 14 and 28 d after intervention. Results: It is revealed that wound healing rates from 5 to 14 d in group A was significantly higher than that of control. The wounds healing rates in group B and C were significantly higher than that of control after 12 d. Masson staining results showed that the collagen content in group A was significantly higher than that of the other 3 groups on the 7, 14 and 28 d. The results of IHC showed that the expression of CD31 in group A was significantly higher than that of the other 3 groups on 7, 14 and 28 d. WB and RT-PCR results showed that relative expression levels of K19, HIF-1α, VEGF, IL-10 in group A were significantly higher than that of the other 3 groups on 7, 14 and 28 d. However, the relative expression levels of IL-8 in group A was significantly lower than that of the other 3 groups on 7, 14 and 28 d. Conclusions: SVFG combined with APRFE can promote the repair of irradiated skin and soft tissue injury by accelerating angiogenesis, promoting collagen synthesis and reducing inflammation.

14.
Curr Stem Cell Res Ther ; 17(8): 815-824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34844547

RESUMO

BACKGROUND: Human adipose-derived stem cells (hASCs) play an important role in regenerative medicine. OBJECTIVE: Exploring the mechanism of Rg1 in the promotion of the proliferation and adipogenic differentiation of hASCs is important in regenerative medicine research. METHODS: To observe ginsenoside Rg1 in promoting the proliferation and adipogenic differentiation of hASCs, Rg1 medium at different concentrations was established and tested using the cell counting kit-8 (CCK-8) assay, oil red O staining, alizarin red, and alcian blue. Compared to the control, differentially expressed genes (DEGs) were screened via DEG analysis, which was carried out in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. To explore the relationship among mRNA, long non-coding RNA (lncRNA) and microRNA (miRNA), we constructed a competing endogenous RNA (ceRNA) network. RESULTS: In this study, Rg1 was observed to promote the proliferation and adipogenic differentiation of hASCs. Additionally, enriched BPs and KEGG pathways may be involved in the promotion process, where FXR1 and Lnc-GAS5-AS1 were found to be regulatory factors. The regulatory network suggested that Rg1 could regulate the adipocytokine signaling pathway and IL-17 signaling pathway via FXR1 and Lnc-GAS5-AS1, which served as the mechanism encompassing the promotion of Rg1 on the proliferation and adipogenic differentiation of hASCs. CONCLUSION: A comprehensive transcriptional regulatory network related to the promotion ability of Rg1 was constructed, revealing mechanisms regarding Rg1's promotion of the proliferation and adipogenic differentiation of hASCs. The present study provides a theoretical basis for optimizing the function of hASCs.


Assuntos
Ginsenosídeos , MicroRNAs , RNA Longo não Codificante , Adipocinas/metabolismo , Azul Alciano/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ginsenosídeos/farmacologia , Humanos , Interleucina-17/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/efeitos dos fármacos
15.
Int J Bioprint ; 7(4): 418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805597

RESUMO

In this study, porous polylactic acid/methotrexate (PLA/MTX) scaffolds were successfully fabricated by three-dimensional (3D) printing technology as controllable drug delivery devices to suppress tumor growth. Scanning electron microscopy and energy-dispersive spectrometer confirmed that MTX drug was successfully incorporated into the PLA filament. 3D-printed PLA/MTX scaffolds allow sustained release of drug molecules in vitro for more than 30 days, reducing systemic toxic side effects caused by injection or oral administration. In vitro cytotoxicity assay revealed that PLA/MTX scaffolds have a relatively high inhibitory effect on the tumor cells (MG-63, A549, MCF-7, and 4T1) and relatively low toxic effect on the normal MC3T3-E1 cells. Furthermore, results of in vivo experiments confirmed that PLA/MTX scaffolds highly suppressed tumor growth and no obvious side effects on the organs. All these results suggested that 3D-printed PLA/MTX scaffolds could be used as controllable drug delivery systems for tumor suppression.

16.
17.
Biomed Res Int ; 2021: 8836243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124262

RESUMO

Severe burns are acute wounds caused by local heat exposure, resulting in life-threatening systemic effects and poor survival. However, the specific molecular mechanisms remain unclear. First, we downloaded gene expression data related to severe burns from the GEO database (GSE19743, GSE37069, and GSE77791). Then, a gene expression analysis was performed to identify differentially expressed genes (DEGs) and construct protein-protein interaction (PPI) network. The molecular mechanism was identified by enrichment analysis and Gene Set Enrichment Analysis. In addition, STEM software was used to screen for genes persistently expressed during response to severe burns, and receiver operating characteristic (ROC) curve was used to identify key DEGs. A total of 2631 upregulated and 3451 downregulated DEGs were identified. PPI network analysis clustered these DEGs into 13 modules. Importantly, module genes mostly related with immune responses and metabolism. In addition, we identified genes persistently altered during the response to severe burns corresponding to survival and death status. Among the genes with high area under the ROC curve in the PPI network gene, CCL5 and LCK were identified as key DEGs, which may affect the prognosis of burn patients. Gene set variation analysis showed that the immune response was inhibited and several types of immune cells were decreased, while the metabolic response was enhanced. The results showed that persistent gene expression changes occur in response to severe burns, which may underlie chronic alterations in physiological pathways. Identifying the key altered genes may reveal potential therapeutic targets for mitigating the effects of severe burns.


Assuntos
Queimaduras , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/imunologia , Mapas de Interação de Proteínas/imunologia , Transcriptoma/imunologia , Queimaduras/genética , Queimaduras/imunologia , Queimaduras/patologia , Biologia Computacional , Humanos , Índices de Gravidade do Trauma
18.
Tissue Cell ; 71: 101506, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33607525

RESUMO

Advanced platelet-rich fibrin (A-PRF) is an autogenous biological material obtained from peripheral blood. A-PRF extract (A-PRFe) contains a high concentration of various cytokines that are increasingly appreciated for their roles in improving stem cell repairing function during tissue regeneration. However, the optimal A-PRFe concentration to stimulate stem cells is unknown. This study aimed to identify the optimal concentrations of A-PRFe to promote adipogenic and osteogenic differentiation of human adipose-derived stem cells (ASCs). We produced A-PRFe from A-PRF clots by centrifuging fresh peripheral blood samples and isolated and identified ASCs using surface CD markers and multilineage differentiation potential. Enzyme-linked immunosorbent assay (ELISA) showed the concentrations of several cytokines, including b-FGF, PDGF-BB, and others, increased gradually, peaked on day 7 and then decreased. Cell proliferation assays showed A-PRFe significantly stimulated ASC proliferation, and proliferation significantly increased at higher A-PRFe doses. The degree of adipogenic and osteogenic differentiation increased at higher A-PRFe concentrations in the culture medium, as determined by oil red O and alizarin red staining. Reverse transcription polymerase chain reaction (RT-PCR) showed that expression levels of genes related to adipogenic/osteogenic differentiation (PPARγ2, C/EBPα, FABP4, Adiponectin, and ALP, OPN, OCN, RUNX2), paracrine (HIF-1α, VEGF, IGF-2) and immunoregulation (HSP70, IL-8) function were higher in groups with a higher concentration of A-PRFe than in lower concentration groups. This study demonstrates that A-PRFe is ideal for use in ASC applications in regenerative medicine because it improves biological functions, including proliferation, adipogenic/osteogenic differentiation, and paracrine function in a dose-dependent manner.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Misturas Complexas/farmacologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Fibrina Rica em Plaquetas/química , Misturas Complexas/química , Relação Dose-Resposta a Droga , Humanos
19.
Front Oncol ; 11: 569295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747905

RESUMO

Resveratrol (RSV) is known to possess anticancer properties in many types of cancers like breast cancer, in which POLD1 may serve as a potential target. However, the anticancer mechanism of RSV on triple negative breast cancer (TNBC) remains unclear. In the present study, the antitumor effects and mechanism of RSV on TNBC cells were analyzed by RNA sequencing (RNA-seq), which was then verified via cell counting kit-8 (CCK8), immunofluorescence, immunohistochemistry, Western Blot (WB), flow cytometry, and hematoxylin-eosin (HE) staining. According to the corresponding findings, the survival rate of MDA-MB-231 cells gradually decreased as RSV treatment concentration increased. The RNA-seq analysis results demonstrated that genes affected by RSV treatment were mainly involved in apoptosis and the p53 signaling pathway. Moreover, apoptosis of MDA-MB-231 cells induced by RSV was observed to be mainly mediated by POLD1. When treated with RSV, the expression levels of full length PARP1, PCNA, and BCL-2 were found to be significantly reduced, and the expression level of Cleaved-PARP1 as well as Cleaved-Caspase3 increased significantly. Additionally, the mRNA expression of POLD1 was significantly reduced after treatment with RSV, and the protein expression level was also inhibited by RSV in a concentration-dependent manner. The prediction of domain interaction suggested that RSV may bind to at least five functional domains of the POLD1 protein (6s1m, 6s1n, 6s1o, 6tny and 6tnz). Furthermore, after RSV treatment, the anti-apoptotic index (PCNA, BCL-2) of MDA-MB-231 cells was found to decrease while the apoptosis index (caspase3) increased. Moreover, the overexpression of POLD1 reduced the extent of apoptosis observed in MDA-MB-231 cells following RSV treatment. Moreover, animal experimental results showed that RSV had a significant inhibitory effect on the growth of live tumors, while POLD1 overexpression was shown to antagonize this inhibitory effect. Accordingly, this study's findings reveal that RSV may promote the apoptosis of TNBC cells by reducing the expression of POLD1 to activate the apoptotic pathway, which may serve as a potential therapy for the treatment of TNBC.

20.
Int J Gen Med ; 14: 9671-9679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34934344

RESUMO

AIM: The aim of the present study was to identify the association between tumor grade and liquid-liquid phase separation (LLPS)-related genes, and to generate a LLPS-related gene-based risk index (LLPSRI) as a prognostic tool for hepatocellular carcinoma (HCC). METHODS: Weighted gene correlation network analysis was performed to test whether the LLPS-related gene modules were associated with tumor grade of HCC. The candidate modules were subjected to functional enrichment analysis. We generated a LLPSRI using the expression profiles of the hub genes among the candidate modules in order to identify patients at high risk. Then, the biological characteristics of the high-risk patients were revealed using gene set enrichment analysis. Additionally, an independent external data set was used to validate the LLPSRI. RESULTS: Four gene modules showed a significant positive correlation with tumor grade and involved various cancer-related pathways. Among the hub genes, six were selected to generate the LLPSRI, which was significantly associated with prognosis of HCC patients. The LLPSRI could successfully divide patients with HCC into high- and low-risk groups, and patients in the high-risk group showed shorter overall survival than those in the low-risk group. E2F, MYC, and mTORC1 signaling may be important determinants of survival in the high-risk group. The prognostic value of the LLPSRI was validated with the independent external data set. CONCLUSION: We identified LLPS-related gene modules that are associated with HCC tumor grade. The LLPSRI may be useful as a prognostic marker of HCC, and it may reliably stratify patients into groups at low or high risk of worse survival. Our analysis also suggests that certain biological characteristics of HCC may be associated with high risk of worse survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA