Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(20): e113743, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37661833

RESUMO

Mitochondria play essential roles in cancer cell adaptation to hypoxia, but the underlying mechanisms remain elusive. Through mitochondrial proteomic profiling, we here find that the prolyl hydroxylase EglN1 (PHD2) accumulates on mitochondria under hypoxia. EglN1 substrate-binding region in the ß2ß3 loop is responsible for its mitochondrial translocation and contributes to breast tumor growth. Furthermore, we identify AMP-activated protein kinase alpha (AMPKα) as an EglN1 substrate on mitochondria. The EglN1-AMPKα interaction is essential for their mutual mitochondrial translocation. After EglN1 prolyl-hydroxylates AMPKα under normoxia, they rapidly dissociate following prolyl-hydroxylation, leading to their immediate release from mitochondria. In contrast, hypoxia results in constant EglN1-AMPKα interaction and their accumulation on mitochondria, leading to the formation of a Ca2+ /calmodulin-dependent protein kinase 2 (CaMKK2)-EglN1-AMPKα complex to activate AMPKα phosphorylation, ensuring metabolic homeostasis and breast tumor growth. Our findings identify EglN1 as an oxygen-sensitive metabolic checkpoint signaling hypoxic stress to mitochondria through its ß2ß3 loop region, suggesting a potential therapeutic target for breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Mama , Feminino , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Proteômica
2.
Plant Cell ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537937

RESUMO

Cold injury is a major environmental stress affecting the growth and yield of crops. Brassinosteroids (BRs) and salicylic acid (SA) play important roles in plant cold tolerance. However, whether or how BR signaling interacts with the SA signaling pathway in response to cold stress is still unknown. Here, we identified an SA methyltransferase, TaSAMT1, that converts SA to methyl SA (MeSA) and confers freezing tolerance in wheat (Triticum aestivum). TaSAMT1 overexpression greatly enhanced wheat freezing tolerance, with plants accumulating more MeSA and less SA, whereas Tasamt1 knockout lines were sensitive to freezing stress and accumulated less MeSA and more SA. Spraying plants with MeSA conferred freezing tolerance to Tasamt1 mutants, but SA did not. We revealed that BRASSINAZOLE-RESISTANT 1 (TaBZR1) directly binds to the TaSAMT1 promoter and induces its transcription. Moreover, TaBZR1 interacts with the histone acetyltransferase TaHAG1, which potentiates TaSAMT1 expression via increased histone acetylation and modulates the SA pathway during freezing stress. Additionally, overexpression of TaBZR1 or TaHAG1 altered TaSAMT1 expression and improved freezing tolerance. Our results demonstrate a key regulatory node that connects the BR and SA pathways in the plant cold stress response. The regulatory factors or genes identified could be effective targets for the genetic improvement of freezing tolerance in crops.

3.
BMC Bioinformatics ; 25(1): 176, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704533

RESUMO

BACKGROUND: Protein residue-residue distance maps are used for remote homology detection, protein information estimation, and protein structure research. However, existing prediction approaches are time-consuming, and hundreds of millions of proteins are discovered each year, necessitating the development of a rapid and reliable prediction method for protein residue-residue distances. Moreover, because many proteins lack known homologous sequences, a waiting-free and alignment-free deep learning method is needed. RESULT: In this study, we propose a learning framework named FreeProtMap. In terms of protein representation processing, the proposed group pooling in FreeProtMap effectively mitigates issues arising from high-dimensional sparseness in protein representation. In terms of model structure, we have made several careful designs. Firstly, it is designed based on the locality of protein structures and triangular inequality distance constraints to improve prediction accuracy. Secondly, inference speed is improved by using additive attention and lightweight design. Besides, the generalization ability is improved by using bottlenecks and a neural network block named local microformer. As a result, FreeProtMap can predict protein residue-residue distances in tens of milliseconds and has higher precision than the best structure prediction method. CONCLUSION: Several groups of comparative experiments and ablation experiments verify the effectiveness of the designs. The results demonstrate that FreeProtMap significantly outperforms other state-of-the-art methods in accurate protein residue-residue distance prediction, which is beneficial for lots of protein research works. It is worth mentioning that we could scan all proteins discovered each year based on FreeProtMap to find structurally similar proteins in a short time because the fact that the structure similarity calculation method based on distance maps is much less time-consuming than algorithms based on 3D structures.


Assuntos
Proteínas , Proteínas/química , Biologia Computacional/métodos , Bases de Dados de Proteínas , Conformação Proteica , Algoritmos , Análise de Sequência de Proteína/métodos , Redes Neurais de Computação
4.
Opt Express ; 32(1): 62-78, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175063

RESUMO

The Ritchey-Common test is widely adopted to measure large optical flats. The traditional Ritchey-Common test eliminates the defocus error with multiple tests by changing the position of the mirrors, which suffers from cumbersome steps, poor repeatability, coupled system error, extra mirror deformation, and potential overturning. The above problems increase the test time, decrease the reliability and accuracy, increase the test cost, and threaten manufacturing safety. We propose a single-test Ritchey-Common interferometry to avoid the obligatory position change in the traditional method. A sub-aperture of test flat is directly measured by a small-aperture interferometer before the test, which is easy to implement, to replace the extra system wavefront measurement in different positions. The defocus is calculated in sub-aperture at exactly the same position as the full-field measurement without the position change, then the surface form under test can be obtained with accurate optical path modeling. Measurement experiments for 100 mm and 2050 mm aperture flats were performed to demonstrate the feasibility of this method. Compared with a direct test in a standard Zygo interferometer, the peak to valley (PV) and root mean square (RMS) errors were 0.0889 λ and 0.0126 λ (λ=632.8 nm), respectively, which reaches the upper limit of accuracy of the interferometer. To the best of our knowledge, this is the first proposal of the Ritchey-Common test that can eliminate the defocus error and realize high accuracy measurement in a single test. Our work paves the way for reliable and practical optical metrology for large optical flats.

5.
J Appl Clin Med Phys ; 25(3): e14282, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38269650

RESUMO

PURPOSE: To evaluate the 3D U-Net model for automatic segmentation and measurement of cervical spine structures using magnetic resonance (MR) images of healthy adults. MATERIALS AND METHODS: MR images of the cervical spine from 160 healthy adults were collected retrospectively. A previously constructed deep-learning model was used to automatically segment anatomical structures. Segmentation and localization results were checked by experienced radiologists. Pearson's correlation analyses were conducted to examine relationships between patient and image parameters. RESULTS: No measurement was significantly correlated with age or sex. The mean values of the areas of the subarachnoid space and spinal cord from the C2/3 (cervical spine 2-3) to C6/7 intervertebral disc levels were 102.85-358.12 mm2 and 53.71-110.32 mm2 , respectively. The ratios of the areas of the spinal cord to the subarachnoid space were 0.25-0.68. The transverse and anterior-posterior diameters of the subarachnoid space were 14.77-26.56 mm and 7.38-17.58 mm, respectively. The transverse and anterior-posterior diameters of the spinal cord were 9.11-16.02 mm and 5.47-10.12 mm, respectively. CONCLUSION: A deep learning model based on 3D U-Net automatically segmented and performed measurements on cervical spine MR images from healthy adults, paving the way for quantitative diagnosis models for spinal cord diseases.


Assuntos
Aprendizado Profundo , Adulto , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Medula Espinal , Vértebras Cervicais/diagnóstico por imagem
6.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731558

RESUMO

Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.


Assuntos
Celulose , Escherichia coli , Nanopartículas Metálicas , Prata , Staphylococcus aureus , Prata/química , Nanopartículas Metálicas/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Celulose/química , Celulose/análogos & derivados , Antibacterianos/farmacologia , Antibacterianos/química , Nanofibras/química , Nanocompostos/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Small ; 19(40): e2301353, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37282825

RESUMO

2D carbon nanomaterials such as graphene, carbon nanosheets, and their derivatives, representing the emerging class of advanced multifunctional materials, have gained great research interest because of their extensive applications ranging from electrochemistry to catalysis. However, sustainable and scalable synthesis of 2D carbon nanosheets (CNs) with hierarchical architecture and irregular structure via a green and low-cost strategy remains a great challenge. Herein, prehydrolysis liquor (PHL), an industrial byproduct of the pulping industry, is first employed to synthesize CNs via a simple hydrothermal carbonization technique. After mild activation with NH4 Cl and FeCl3 , the as-prepared activated CNs (A-CN@NFe) display an ultrathin structure (≈3 nm) and a desirable specific surface area (1021 m2 g-1 ) with hierarchical porous structure, which enables it to be both electroactive materials and structural support materials in nanofibrillated cellulose/A-CN@NFe/polypyrrole (NCP) nanocomposite, and thus endowing nanocomposite with impressive capacitance properties of 2546.3 mF cm-2 at 1 mA cm-2 . Furthermore, the resultant all-solid-state symmetric supercapacitor delivers a satisfactory energy storage ability of 90.1 µWh cm-2 at 250.0 µW cm-2 . Thus, this work not only opens a new window for sustainable and scalable synthesis of CNs, but also offers a double profits strategy for energy storage and biorefinery industry.

8.
BMC Cancer ; 23(1): 660, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452311

RESUMO

BACKGROUND AND AIM: Necroptosis plays an important role in hepatocellular carcinoma (HCC) development, recurrence, and immunotherapy tolerance. We aimed to build a new prognostic necroptosis-related gene signature that could be used for survival and immunotherapy prediction in HCC patients. METHODS: We found that necroptosis was associated with HCC progression and survival outcomes and was involved in the immune infiltration of HCC. Multiple bioinformatics methods including WGCNA, LASSO-Cox regression, stepwise Cox regression, and Random Forest and Boruta model analysis, were used to establish a prognostic profile related to necroptosis. The necroptosis-related gene signature was validated in ICGC and GSE14520 datasets. RESULTS: This five-gene signature showed excellent predictive performance and was an independent risk factor for patients' overall survival outcome in the three cohorts. Moreover, this signature was an exact predictor using fewer genes than previous gene signatures. Finally, qRT-PCR and immunohistochemical staining investigations were performed in previously collected fresh frozen tumor tissues from HCC patients and their paracancerous normal tissues, and the results were consistent with the bioinformatics results. We found that LGALS3 not only affected the proliferation and migration ability of HepG2 cells but also affected necroptosis and the expression of inflammatory cytokines. CONCLUSION: In summary, we established and validated an individualized prognostic profile related to necroptosis to forecast the therapeutic response to immune therapy, which might offer a potential non-apoptotic therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Necroptose/genética , Neoplasias Hepáticas/genética , Prognóstico , Biologia Computacional
9.
Crit Rev Food Sci Nutr ; : 1-14, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548410

RESUMO

Development and utilization of high quality vegetable protein resources has become a hotspot. Food extrusion as a key technology can efficiently utilize vegetable protein. By changing the extrusion conditions, vegetable protein can obtain unique functional properties, which can meet the different needs of food processing. However, extrusion of single vegetable protein also exposes many disadvantages, such as low degree functional properties, poor quality stability and lower tissue fibrosis. Therefore, addition of polysaccharide has become a new development trend to compensate for the shortcomings of extruded vegetable protein. The unique functional properties of vegetable protein-polysaccharide conjugates (Maillard reaction products) can be achieved after extrusion due to regulation of polysaccharides and adjustment of extrusion parameters. However, the physicochemical changes caused by the intermolecular interactions between protein and polysaccharide during extrusion are complex, so control of these changes is still challenging, and further studies are needed. This review summarizes extrusion modification of vegetable proteins or polysaccharides. Next, the effect of different types of polysaccharides on vegetable proteins and its regulation mechanism during extrusion is mainly introduced, including the extrusion of starch polysaccharide-vegetable protein, and non-starch polysaccharide-vegetable protein. Finally, it also outlines the development perspectives of extruded vegetable protein-polysaccharide.

10.
Appl Opt ; 62(24): 6480-6490, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37706842

RESUMO

With the development of space optics, optical freeform surfaces have gradually been utilized in reflective optical imaging systems in recent years. Freeform surfaces not only bring many benefits to the optical imaging system, but also present many challenges to their manufacture. Regardless of the machining method used, machining errors during the fabrication of freeform surfaces will exist, which limits the accuracy of freeform surface machining. In this paper, the deviation root mean square (RMS) of a freeform surface from the reference aspheric surface is proposed to evaluate the manufacturability of the freeform surface by using single-point diamond turning. Then the deviation RMS of freeform surfaces is added to the design process of the optical system as a manufacturing constraint. Subsequently, an off-axis three-mirror system and an off-axis two-mirror system with and without manufacturing constraints are designed, respectively. Then the imaging quality of these optical systems and the linear interpolation error RMS of freeform mirror are analyzed. It can be concluded that, on the basis of reaching the imaging quality requirements, the machining difficulty of a freeform mirror can be reduced when adding manufacturing constraints to the design process.

11.
Appl Opt ; 62(20): 5443-5451, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37706861

RESUMO

The radius of curvature (R) is a fundamental parameter of spherical optical surfaces. The measurement range of the widely adopted traditional interferometric method is limited by the length of the precision linear guide rail carrying the measured surface from the cat's eye to the confocal position, and the test result is vulnerable to airflow and vibration in the test environment. An interferometric method is proposed for the radius measurement of spherical surfaces based on a small axial moving distance and the corresponding defocus wavefront to eliminate the dependence on a long guide rail and extend the measuring range. To eliminate the influence of the test environment and calculate the R, a defocus transform algorithm is proposed to instantaneously measure the defocus wavefront from a single interferogram. Numerical simulations theoretically demonstrate that there is no limit to the measurement range of this method because only a short distance of the measured mirror must be moved. A spherical mirror with a radius of curvature of 101.6087 mm is experimentally tested, and the relative measurement error is 0.037%. This method can achieve high accuracy for optical shops and greatly increase the measurement range of the interferometric method without additional equipment.

12.
Curr Microbiol ; 80(4): 129, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884095

RESUMO

During an investigation of the fungal pathogens associated with the invasive weed Ageratina adenophora from China, some interesting isolates were obtained from healthy leaf, leaf spot, and roots of this weed. Among them, a novel genus Mesophoma, containing two novel species M. speciosa and M. ageratinae, was found. Phylogenetic analysis of the combined, the internal transcribed spacer (ITS), large nuclear subunit ribosomal DNA (LSU), the RNA polymerase II second largest subunit (rpb2), and the partial ß-tubulin (tub2) sequences, showed that M. speciosa and M. ageratinae formed a distinct clade far from all genera previously described in the family Didymellaceae. Combined distinctive morphological characters, including smaller and aseptate conidia when comparing with nearby genera Stagonosporopsis, Boeremia, and Heterphoma, allowed us to describe them as novel species belonging to a novel genus Mesophoma. The full descriptions, illustrations, and a phylogenetic tree showing the position of both M. speciosa and M. ageratinae are provided in this paper. Moreover, the potential for two strains belonging to these two species to be developed into a biocontrol for the spread of the invasive weed Ag. adenophora is also discussed.


Assuntos
Ascomicetos , Filogenia , DNA Fúngico/genética , DNA Ribossômico/genética , Ascomicetos/genética , China
13.
Ren Fail ; 45(2): 2258983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37755332

RESUMO

OBJECTIVE: To explore the correlation between neutrophil-to-lymphocyte ratio (NLR) and contrast-induced acute kidney injury (CI-AKI). To develop machine-learning (ML) methods based on NLR and other relevant high-risk factors to establish new and effective predictive models of CI-AKI. Methods: The data of 2230 patients, who underwent elective vascular intervention, coronary angiography and percutaneous coronary intervention were retrospectively collected. The patients were divided into a CI-AKI group and a non-CI-AKI group. Logistic regression was used to analyze the correlation of NLR with CI-AKI and high-risk factors for CI-AKI, and logistic regression (LR), random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and naïve Bayes (NB) models based on NLR and the high-risk factors were established. RESULTS: A high NLR(>2.844) was an independent risk factor for CI-AKI (odds ratio = 2.304, p < 0.001). The area under the ROC curve (AUC) of the NB model was the largest (0.774), indicating that it had the best performance. NLR, serum creatinine concentration, fasting plasma glucose concentration, and use of ß-blocker all accounted for a large proportion of the predictive performance of each model and were the four most important factors affecting the occurrence of CI-AKI. CONCLUSIONS: There was a significant correlation between NLR and CI-AKI The NB model exhibited the best predictive performance out of the five ML models based on NLR exhibited the best predictive performance out of the five ML models.


Assuntos
Injúria Renal Aguda , Neutrófilos , Humanos , Estudos Retrospectivos , Teorema de Bayes , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Linfócitos , Aprendizado de Máquina
14.
Molecules ; 28(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37049719

RESUMO

The demand for antimicrobial materials is gradually increasing due to the threat of infections and diseases caused by microorganisms. Silver nanoparticles (AgNPs) are widely used because of their broad-spectrum antimicrobial properties, but their synthesis methods are often environmentally harmful and AgNPs difficult to isolate, which limits their application in several fields. In this study, an aqueous solution of dialdehyde cellulose (DAC) was prepared and used as a reducing agent to synthesize AgNPs in an efficient and environmentally friendly process. The synthesized AgNPs can be easily separated from the reducing agent to expand their applications. In addition, the AgNPs were immobilized in situ on dialdehyde cellulose to form antibacterial composite films. The results showed that the prepared silver nanoparticles were mainly spherical and uniformly dispersed, with an average size of about 25 nm under optimal conditions. Moreover, the dialdehyde cellulose-nanosilver (DAC@Ag) composite films had excellent mechanical properties, positive transparency, ultraviolet-blocking properties, and effective antibacterial activity against E. coli and S. aureus. Notably, the composite films exhibited excellent oxygen and water vapor barrier properties, with WVT and ORT of 136.41 g/m2·24 h (30 °C, 75% RH) and <0.02 cm3/m2·24 h·0.1 MPa (30 °C, 75% RH), respectively, better than commercial PE films. Hence, this study not only provides an environmentally friendly method for the preparation of silver nanoparticles, but also offers a simple and novel strategy for the in situ synthesis of silver-loaded antibacterial composite films.


Assuntos
Nanopartículas Metálicas , Substâncias Redutoras , Prata , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia
15.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838845

RESUMO

The charge plays an important role in cellulose nanocrystal (CNC) self-assembly to form liquid crystal structures, which has rarely been systematically explored. In this work, a novel technique combining atomic force microscopy force and atomistic molecular dynamics simulations was addressed for the first time to systematically investigate the differences in the CNC self-assembly caused by external positive and negative charges at the microscopic level, wherein sodium polyacrylate (PAAS) and chitosan oligosaccharides (COS) were used as external positive and negative charge additives, respectively. The results show that although the two additives both make the color of CNC films shift blue and eventually disappear, their regulatory mechanisms are, respectively, related to the extrusion of CNC particles by PAAS and the reduction in CNC surface charge by COS. The two effects both decreased the spacing between CNC particles and further increased the cross angle of CNC stacking arrangement, which finally led to the color variations. Moreover, the disappearance of color was proved to be due to the kinetic arrest of CNC suspensions before forming chiral nematic structure with the addition of PAAS and COS. This work provides an updated theoretical basis for the detailed disclosure of the CNC self-assembly mechanism.


Assuntos
Celulose , Nanopartículas , Celulose/química , Nanopartículas/química
16.
J Sci Food Agric ; 103(13): 6553-6565, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37229574

RESUMO

BACKGROUND: Post-harvest quality assurance is a crucial link between grain production and end users. It is essential to ensure that grain does not deteriorate due to heating during storage. To visualize the temperature distribution of a grain pile, the present study proposed a three-dimensional (3D) temperature field visualization method based on an adaptive neighborhood clustering algorithm (ANCA). The ANCA-based visualization method contains four calculation modules. First, discrete grain temperature data, obtained by sensors, are collected and interpolated using back propagation (BP) neural networks to model the temperature field. Then a new adaptive neighborhood clustering algorithm is applied to divide interpolation data into different categories by combining spatial characteristics and spatiotemporal information. Next, the Quickhull algorithm is used to compute the boundary points of each cluster. Finally, the polyhedrons determined by boundary points are rendered into different colors and are constructed in a 3D temperature model of the grain pile. RESULTS: The experimental results show that ANCA is much better than the DBSCAN and MeanShift algorithms on compactness (around 95.7% of tested cases) and separation (approximately 91.3% of tested cases). Moreover, the ANCA-based visualization method for grain pile temperatures has a shorter rendering time and better visual effects. CONCLUSION: This research provides an efficient 3D visualization method that allows managers of grain depots to obtain temperature field information for bulk grain visually in real time to help them protect grain quality during storage. © 2023 Society of Chemical Industry.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Temperatura , Algoritmos , Análise por Conglomerados , Tecnologia
17.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1731-1738, 2023 Apr.
Artigo em Zh | MEDLINE | ID: mdl-37282947

RESUMO

Diabetic ulcer(DU) is one of the common complications of diabetes often occurring in the peripheral blood vessels of lower limbs or feet with a certain degree of damage. It has high morbidity and mortality, a long treatment cycle, and high cost. DU is often clinically manifested as skin ulcers or infections in the lower limbs or feet. In severe cases, it can ulcerate to the surface of tendons, bones or joint capsules, and even bone marrow. Without timely and correct treatment, most of the patients will have ulceration and blackening of the extremities. These patients will not be able to preserve the affected limbs through conservative treatment, and amputation must be performed. The etiology and pathogenesis of DU patients with the above condition are complex, which involves blood circulation interruption of DU wound, poor nutrition supply, and failure in discharge of metabolic waste. Relevant studies have also confirmed that promoting DU wound angiogenesis and restoring blood supply can effectively delay the occurrence and development of wound ulcers and provide nutritional support for wound healing, which is of great significance in the treatment of DU. There are many factors related to angiogenesis, including pro-angiogenic factors and anti-angiogenic factors. The dynamic balance between them plays a key role in angiogenesis. Meanwhile, previous studies have also confirmed that traditional Chinese medicine can enhance pro-angiogenic factors and down-regulate anti-angiogenic factors to promote angiogenesis. In addition, many experts and scholars have proposed that traditional Chinese medicine regulation of DU wound angiogenesis in the treatment of DU has broad prospects. Therefore, by consulting a large number of studies available, this paper expounded on the role of angiogenesis in DU wound and summarized the research advance in traditional Chinese medicine intervention in promoting the expression of angiogenic factors [vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), and angiopoietin(Ang)] which played a major role in promoting wound angiogenesis in the treatment of DU to provide ideas for further research and new methods for clinical treatment of DU.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Humanos , Medicina Tradicional Chinesa , Úlcera , Fator A de Crescimento do Endotélio Vascular/metabolismo , Complicações do Diabetes/tratamento farmacológico , Cicatrização/fisiologia
18.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1724-1730, 2023 Apr.
Artigo em Zh | MEDLINE | ID: mdl-37282946

RESUMO

Diabetic ulcer(DU) is a chronic and refractory ulcer which often occurs in the foot or lower limbs. It is a diabetic complication with high morbidity and mortality. The pathogenesis of DU is complex, and the therapies(such as debridement, flap transplantation, and application of antibiotics) are also complex and have long cycles. DU patients suffer from great economic and psychological pressure while enduring pain. Therefore, it is particularly important to promote rapid wound healing, reduce disability and mortality, protect limb function, and improve the quality of life of DU patients. By reviewing the relevant literatures, we have found that autophagy can remove DU wound pathogens, reduce wound inflammation, and accelerate ulcer wound healing and tissue repair. The main autophagy-related factors microtubule-binding light chain protein 3(LC3), autophagy-specific gene Beclin-1, and ubiquitin-binding protein p62 mediate autophagy. The traditional Chinese medicine(TCM) treatment of DU mitigates clinical symptoms, accelerates ulcer wound healing, reduces ulcer recurrence, and delays further deterioration of DU. Furthermore, under the guidance of syndrome differentiation and treatment and the overall concept, TCM treatment harmonizes yin and yang, ameliorates TCM syndrome, and treats underlying diseases, thereby curing DU from the root. Therefore, this article reviews the role of autophagy and major related factors LC3, Beclin-1, and p62 in the healing of DU wounds and the intervention of TCM, aiming to provide reference for the clinical treatment of DU wounds and subsequent in-depth studies.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Pé Diabético , Humanos , Úlcera/terapia , Medicina Tradicional Chinesa , Proteína Beclina-1 , Qualidade de Vida , Cicatrização , Autofagia , Pé Diabético/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética
19.
Angew Chem Int Ed Engl ; 62(51): e202315143, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37964724

RESUMO

With the rapid development of integrated circuits towards miniaturization and complexity, there is an urgent need for materials with low dielectric constant/loss and high processing temperatures to effectively prevent signal delay and crosstalk. With high porosity, thermal stability, and easy structural modulation, covalent organic frameworks have great potential in the field of low dielectric materials. However, the optimization of dielectric properties by modulating the conjugated/plane curvature structure of covalent organic frameworks (COFs) has rarely been reported. Accordingly, we herein innovatively prepare COF films with adjustable planar curvature, hence possessing ultralow dielectric constant (1.9 at 1 kHz), ultralow dielectric loss at 1 kHz (0.0029 at room temperature, 0.0052 at 200 °C), high thermal decomposition temperature (5 % weight loss temperature, 473 °C) and good hydrophobicity (water contact angle, 105.3°). Also, to the best of our knowledge, we are the first to report that the resulting COF film enables high surface potential (≈320 V) for one week, attributing to its intrinsic high porosity, thus presenting great potential in electret applications. Accordingly, this innovative work provides a readily available and scalable idea to prepare materials with comprehensively excellent dielectric and electret properties as well as high processing temperatures simultaneously for advanced electronic device applications.

20.
Small ; 18(49): e2204199, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36284474

RESUMO

Currently, the smart photonic materials that can switch circularly polarized signals in real-time have attracted extensive attention due to numerous potential applications in information storage and photonics displays. However, the dynamically reversible switching of circularly polarized signals requires precise structural reconfiguration, which is rarely achieved in traditional biomaterials. Herein, a dual photonic bandgap (PBG) structure is constructed based on the optical propagation principle of cellulose-based photonic crystals, enabling the flexible switching of the intensity, wavelength, and direction of circularly polarized luminescence (CPL). By adjusting the fluorescence intensity and the matching degree of chiral structure, the asymmetric factor value of dual PBG structure is up to -1.47, far exceeding other cellulose-based materials. Importantly, it is demonstrated that dual CPL emission can be efficiently induced by two different PBGs, opening a new approach for on-demand switching of single and dual CPL emission. In addition, the dual PBG structure exhibits dual circularly polarized reflected signals under the circular polarizer, which perfectly embodies the applicability of multiple encryptions in QR codes. This work provides new insights into the real-time manipulation of circularly polarized signals by chiral photonic materials.


Assuntos
Luminescência , Fótons , Materiais Biocompatíveis , Celulose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA