Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nano Lett ; 23(16): 7434-7441, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552583

RESUMO

Understanding the chiral mechanism of chiral hybrid perovskites is a prerequisite for developing relevant chiroptoelectronic applications. Although conventional circular dichroism (CD) spectroscopy can be used to characterize chirality in chiral perovskites, it has a low signal-to-noise ratio and can provide only information about macroscopic chirality. Herein, with the aim of revealing the microscopic chiral mechanism in chiral perovskites, we utilize a spacer cation alloying strategy to construct chiral two-dimensional perovskites. For the first time, we demonstrate second-harmonic-generation CD microarea imaging in chiral perovskite thin films to unveil their spatially correlated chirality. In combination with theoretical calculations, it is revealed that the spatially correlated chirality is caused by localized out-of-plane supramolecular orientations. This work will not only advance the understanding of the mechanism of chiroptical activity in chiral perovskites but also provide inspiration for the rational design and synthesis of perovskites for chirality-related nonlinear optoelectronic devices.

2.
Nano Lett ; 22(2): 846-852, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35023753

RESUMO

Structural engineering permits the introduction of chirality into organic-inorganic hybrid metal halides (HMHs), which creates a promising and exclusive material for applications in various optoelectronics. However, the optical activity regulation of chiral HMHs remains largely unexplored. In this work, we have synthesized two pairs of lead-free chiral HMHs with a zero-dimensional tetrahedral arrangement, i.e., (R- and S-1-(1-naphthyl)ethylammonium)2CuCl4 and (R- and S-1-(2-naphthyl)ethylammonium)2CuCl4. The magnitude of optical activity in these HMHs can be efficiently modulated as a result of the different magnetic transition dipole moments. Furthermore, these HMHs exhibited effective second-harmonic generation (SHG) and distinct SHG-circular dichroism (CD), with (R-1-(1-naphthyl)ethylammonium)2CuCl4 having an anisotropy factor (gSHG-CD) of up to 0.41. This work not only provides insights into regulating the optical activity and anisotropic SHG effect of lead-free chiral HMHs but also confirms the feasibility of SHG-CD spectroscopy as a promising tool for characterizing the intrinsic optical activity of chiral materials.


Assuntos
Microscopia de Geração do Segundo Harmônico , Anisotropia , Dicroísmo Circular , Cobre , Rotação Ocular , Microscopia de Geração do Segundo Harmônico/métodos
3.
Angew Chem Int Ed Engl ; 62(41): e202309600, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610865

RESUMO

Due to the pronounced anisotropic response to circularly polarized light, chiral hybrid organic-inorganic metal halides have been regarded as promising candidates for the application in nonlinear chiroptics, especially for the second-harmonic generation circular dichroism (SHG-CD) effect. However, designing novel lead-free chiral hybrid metal halides with large anisotropy factors and high laser-induced damage thresholds (LDT) of SHG-CD remains challenging. Herein, we develop the first chiral hybrid germanium halide, (R/S-NEA)3 Ge2 I7 ⋅H2 O (R/S-NGI), and systematically investigated its linear and nonlinear chiroptical properties. S-NGI and R-NGI exhibit large anisotropy factors (gSHG-CD ) of 0.45 and 0.48, respectively, along with a high LDT of 38.46 GW/cm2 ; these anisotropy factors were the highest values among the reported lead-free chiral hybrid metal halides. Moreover, the effective second-order nonlinear optical coefficient of S-NGI could reach up to 0.86 pm/V, which was 2.9 times higher than that of commercial Y-cut quartz. Our findings facilitate a new avenue toward lead-free chiral hybrid metal halides, and their implementation in nonlinear chiroptical applications.

4.
Opt Lett ; 47(21): 5573-5576, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219271

RESUMO

Quasi-2D Ruddlesden-Popper-type perovskites (RPPs) exhibit excellent nonlinear optical properties due to their multiple quantum well structures with large exciton binding energy. Herein, we introduce chiral organic molecules into RPPs and investigate their optical properties. It is found that the chiral RPPs possess effective circular dichroism in the ultraviolet to visible wavelengths. Two-photon absorption (TPA)-induced efficient energy funneling from small- to large-n domains is observed in the chiral RPP films, which induces strong TPA with a coefficient up to 4.98 cm MW-1. This work will broaden the application of quasi-2D RPPs in chirality-related nonlinear photonic devices.

5.
Inorg Chem ; 61(11): 4735-4742, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35266707

RESUMO

It has been demonstrated that the alloyed perovskite nanocrystals (NCs) with a small amount of Cd element may passivate the inherent halide vacancies in perovskite NCs and improve their stability. However, the study of the optical properties of such alloyed perovskite NCs still remains essentially untouched, which will seriously hinder relevant applications. Herein, using different amounts of CdBr2 as an alloyed metal precursor, a series of CsPbxCd1-xBr3 NCs (x = 1, 0.93, and 0.88) were synthesized. Compared with bare CsPbBr3 NCs, the Cd-alloyed NCs exhibited a near-unity photoluminescence quantum yield (99%), efficiently improved stability, and enhanced electron-phonon coupling strength. As the Cd-alloyed amount was increased, their hot-carrier cooling time became faster and the exciton-biexciton interaction decreased, causing a decreased threshold of two-photon excited amplified spontaneous emission (ASE) from 1.58 to 1.23 mJ cm-2. In addition, the Cd-alloying method can also improve the photostability of ASE, resulting in the initial ASE intensity remaining at 90% even after 7.5 × 105 pulse shots. This work implies that the Cd-alloyed CsPbBr3 NCs will be promising for application in a laser gain medium.

6.
Opt Express ; 29(17): 27298-27308, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615148

RESUMO

A novel single-shot ultrafast all-optical photography with raster principle (OPR) that can capture real-time imaging of ultrafast phenomena is proposed and demonstrated. It consists of a sequentially timed module (STM), spectral-shaping module (SSM), and raster framing camera (RFC). STM and SSM are used for linearly encoding frequency-time mapping and system calibration, respectively. The function of the RFC is sampling the target by microlens arrays and framing on the basis of frequency-time-spatial positions conversion. We demonstrated the recording of transient scenes with the spatial resolution of ∼90lp/mm, the frame number of 12 and the frame rate of 2 trillion frames per second (Tfps) in single-shot. Thanks to its high spatial-temporal resolution, high frame rate (maximum up to 10 Tfps or more) and sufficient frame number, our OPR can observe the dynamic processes with complex spatial structure at the atomic time scale (10 fs∼1ps), which is promising for application in plasma physics, shock waves in laser-induced damage, and dynamics of condensed matter materials.

7.
Angew Chem Int Ed Engl ; 60(15): 8441-8445, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33481292

RESUMO

Hybrid organic-inorganic metal halides have emerged as highly promising materials for a wide range of applications in optoelectronics. Incorporating chiral organic molecules into metal halides enables the extension of their unique optical and electronic properties to chiral optics. By using chiral (R)- or (S)-methylbenzylamine (R-/S-MBA) as the organic component, we synthesized chiral hybrid copper halides, (R-/S-MBA)2 CuCl4 , and investigated their optical activity. Thin films of this material showed a record anisotropic g-factor as high as approximately 0.06. We discuss the origin of the giant optical activity observed in (R-/S-MBA)2 CuCl4 by theoretical modeling based on density functional theory (DFT) and demonstrate highly efficient second harmonic generation (SHG) in these samples. Our study provides insight into the design of chiral materials by structural engineering, creating a new platform for chiral and nonlinear photonic device applications of the chiral hybrid copper halides.

8.
Small ; 16(52): e2005626, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33283445

RESUMO

For next-generation Internet-of-Everything applications, for example, artificial-neural-network image sensors, artificial retina, visible light communication, on-chip light interconnection, and flexible devices, etc., high-performance microscale photodetectors are in urgent demands. 2D material (2DM) photodetectors have been researched and demonstrated impressive performances. However, they have not met the demands in filterless narrowband photoresponse, wide linear dynamic range (LDR), ultralow dark current, and large on/off ratio, which are key performances for these applications. 2D Ruddlesden-Popper perovskites (2D-RPPs) are recently highlighted photovoltaic and optoelectronic materials. Embedding ultrathin 2D-RPPs into 2DM photodetectors holds potentials to improve these performances. Herein, a single-crystalline ultrathin (PEA)2 PbI4 is integrated into a vertical-stacked graphene-(PEA)2 PbI4 -graphene micro photoconductor (V-PEPI-PC). V-PEPI-PC exhibits narrowband photoresponses at 517 nm with a full-width-at-half-maximum of 15 nm and a wide LDR of 122 dB. Due to the multiple quantum wells in (PEA)2 PbI4 , V-PEPI-PC demonstrates an ultralow dark current of 1.1 × 10-14 A (44 pA mm-2 ), a high specific detectivity of 1.2 × 1013 Jones, and a high on/off ratio of 1.6 × 106 . Owing to the short vertical channel, V-PEPI-PC shows a fast response rise time of 486 µs. Therefore, the vertical-stacked photodetectors based on hybrid 2D-RPPs and 2DMs may have great potentials in future optoelectronics.

9.
Opt Lett ; 45(6): 1350-1353, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32163963

RESUMO

Cu-doped InP (Cu:InP) and InP/ZnSe nanocrystals (NCs) with near-infrared-I (NIR-I) emission were prepared and characterized. Femtosecond transient absorption spectra revealed that the epitaxial growth of a ZnSe diffusion barrier onto the Cu:InP core can amplify its exciton-dopant coupling strength, with the energy transfer times of $\sim{220}\;{\rm ps}$∼220ps for Cu:InP NCs and $\sim{183}\;{\rm ps}$∼183ps for Cu:InP/ZnSe NCs. Importantly, the Cu:InP/ZnSe NCs exhibit much larger two- and three-photon absorption cross sections, reaching $\sim{10162}$∼10162 GM at 1030 nm and $\sim{1.06} \times {{10}^{ - 77}}\;{{\rm cm}^6}\,{{\rm s}^2}\,{{\rm photon}^{ - 2}}$∼1.06×10-77cm6s2photon-2 at 1600 nm, compared with Cu:InP NCs.

10.
Nanotechnology ; 31(20): 205204, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32015224

RESUMO

Two-dimensional layered materials have been widely utilized as nonlinear absorption materials to transfer continue-wave into pulse trains in fiber laser systems. Here, we prepare robust GaSe/GeSe composites with high power bearing capacity as saturable absorbers (SAs) and then investigate their nonlinear optical properties via broadband Z-scan measurement at 800 nm and 1550 nm, respectively. The modulation depths of GaSe/GeSe based SAs are measured to be 11.97% and 7.69% at 1550 nm. After incorporating the GaSe/GeSe SAs into an Erbium-doped fiber laser cavity, passively Q-switched pulse trains could be obtained with repetition rates changing from 83.58 to 136.78 kHz (70.41 to 161.65 kHz). The maximum output power and pulse energy are 52.1 mW/370.67 nJ (GaSe) and 21.6 mW/133.74 nJ (GeSe) under the maximum pump power of 600 mW. The results indicate that GaSe and GeSe possess outstanding thermal stability and could be employed as remarkable saturable absorption materials for high-energy pulses generation.

11.
Opt Lett ; 44(15): 3873-3876, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368990

RESUMO

CsPbBr2.7I0.3 two-dimensional (2D) nanoplatelets (NPs) with emission wavelengths of 469 nm and 527 nm were synthesized and characterized. Femtosecond transient absorption spectra revealed hot carrier cooling times of ∼368 fs and ∼438 fs for 469 nm and 527 nm 2D NPs, respectively. Importantly, the 2D NPs exhibit giant two-, three-, four-, and five-photon absorption cross-sections, reaching ∼4.1×106 GM at 830 nm, ∼2.3×10-74 cm6 s2 photon-2 at 1300 nm, 2.06×10-104 cm8 s3 photon-3 at 1600 nm, and 1.50×10-136 cm10 s4 photon-4 at 2200 nm, respectively, which are 3-8 orders of magnitude larger, compared to specially designed organic molecules.

12.
Opt Lett ; 44(9): 2256-2259, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042197

RESUMO

Cysteine-capped cadmium selenide/cadmium sulfide (CdSe/CdS) dot/rod nanocrystals (NCs) were synthesized and then doped in poly(vinyl alcohol) (PVA) films. Compared with an L-/D-cysteine-capped NC solution (10-4), the anisotropic factors of the circular dichroism and circular polarized luminescence in the doped PVA films increased by one order of magnitude, probably because of the enhanced anisotropy degree, crystal orientations, and ordered morphologies. The two- and three-photon absorption coefficients of the doped PVA films were determined as 0.58 cm/GW at 800 nm and 2.3×10-4 cm3/GW2 at 1300 nm, respectively. The chiral NC-doped PVA films are promising for applications in chirality-related nonlinear photonic devices.

13.
Angew Chem Int Ed Engl ; 58(32): 11105-11111, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31172619

RESUMO

Photosensitizers (PSs) with stimuli-responsive reversible switching of intersystem crossing (ISC) are highly promising for smart photodynamic therapy (PDT), but achieving this goal remains a tremendous challenge. This study introduces a strategy to obtain such reversible switching of ISC in a new class of PSs, which exhibit stimuli-initiated twisting of conjugated backbone. We present a multidisciplinary approach that includes femtosecond transient absorption spectroscopy and quantum chemical calculations. The organic structures reported show remarkably enhanced ISC efficiency (ΦISC ), switching from nearly 0 to 90 %, through an increase in the degree of twisting, providing an innovative mechanism to promote ISC. This leads us to propose here and demonstrate the concept of smart PDT, where pH-induced reversible twisting maximizes the ISC rate, and thus enables strong photodynamic action only under pathological stimulus (such as change in pH, hypoxia, or exposure to enzymes). The ISC process is turned off to deactivate PDT ability, when the PS is transferred or metabolized away from pathological region.


Assuntos
Compostos Orgânicos/química , Fármacos Fotossensibilizantes/química , Estrutura Molecular , Compostos Orgânicos/síntese química , Fármacos Fotossensibilizantes/síntese química , Fototerapia
14.
Opt Lett ; 43(9): 1998-2001, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714730

RESUMO

A passively mode-locked thulium-doped fiber (TDF) laser was realized by employing chemical vapor deposited few-layer molybdenum ditelluride (MoTe2) as a saturable absorber (SA). The few-layer MoTe2 film was transferred onto the waist of a microfiber and then incorporated into a TDF laser with a typical all-fiber ring cavity configuration. Stable soliton pulses emitting at 1930.22 nm were obtained with a 3 dB bandwidth of 4.45 nm, a pulse duration of 952 fs, and an average power of 36.7 mW.

16.
J Phys Chem Lett ; 15(22): 5848-5853, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38795047

RESUMO

Lead-free double perovskites offer enhanced stability and lower toxicity compared to their lead-based counterparts. Dual B-site cations can introduce elemental and structural diversity into double perovskite materials, enabling fine-tuning of the optical properties. However, the study of the nonlinear optical (NLO) properties of lead-free double perovskites is still nascent, hindering their relevant potential applications. Based on this, this work synthesizes a series of Cs2AgIn1-xBixCl6 (x = 0, 0.1, 0.25, 0.75, 1) single crystals, with the aim to explore the impact of composition on their NLO properties. Interestingly, Cs2AgInCl6 shows surface defect-induced second harmonic generation. With increasing Bi3+ concentration, the multiphoton absorption coefficients of Cs2AgIn1-xBixCl6 single crystals increase as a result of increasing state density. This work is helpful to understand well the NLO properties of lead-free double perovskites, laying a foundation for the development of related applications.

17.
J Phys Chem Lett ; 14(51): 11697-11703, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38109354

RESUMO

Among various chiral semiconductor materials, chiral two-dimensional (2D)/three-dimensional (3D) composite perovskites (CPs) offer the benefits of strong interface asymmetry and energy transfer between 2D and 3D phases, making the chiral CPs promising for spintronic devices. Therefore, understanding their spintronic properties will be greatly important for expanding their relevant applications. In this work, we synthesized one pair of chiral 2D/3D CP films. Their Rashba effect and spin relaxation process have been investigated by polarization-dependent femtosecond transient absorption spectroscopy. Interestingly, under left- and right-handed circularly polarized light (CPL) excitation, a two-photon emission intensity difference is observed in chiral 2D/3D CP films at 298 K. This work sheds light on the spin-dependent excitonic characteristics of chiral 2D/3D CPs and confirms the feasibility of their application in near-infrared CPL detection.

18.
Nanoscale ; 14(41): 15414-15421, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36218542

RESUMO

Chiral transition metal oxides (TMOs) are widely used in various optoelectronic devices. However, the currently poor understanding of how the optical activities of TMOs can be regulated considerably hinders their applications. We have synthesized a series of chiral TMO nanoparticles (NPs), i.e., MoOx (x = 2, 2.4 and 2.5) and Co3O4. Compared with TMO NPs with L-/D-cysteine molecules as the capping ligand, L-/D-histidine-capped TMO NPs possess larger anisotropic factors (gabs), which are as high as ∼0.01 and ∼0.02 for L-/D-histidine-capped MoO2.5 and Co3O4 NPs, respectively. A nondegenerate coupled oscillator (NDCO) theoretical calculation confirms that L-/D-histidine molecules can generate a smaller electric dipole moment and thus induce higher optical activity than L-/D-cysteine molecules. Impressively, the chiral NPs exhibit broadband second harmonic generation. This work indicates that chiral TMO NPs have potential for application in nonlinear optical devices.

19.
ACS Omega ; 7(33): 29415-29419, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033666

RESUMO

Lead-free perovskite materials with good stability are promising for various applications. In order to explore their application in optoelectronic devices, it is essential to investigate their fundamental optical properties. In this work, we have synthesized a CsMnBr3 single crystal (SC) with red emission at ∼621 nm and studied their optical properties. Through the measurement of temperature-dependent photoluminescence (PL) spectra, it is found that a phase transition occurs at approximately 100 K in the SC, which is absent in the CsMnBr3 nanocrystals (NCs). Furthermore, the SC exhibits stronger electron and longitudinal optical phonon coupling strength than that of the NCs at low temperatures. In addition, under the resonant excitation at 600 nm, the SC possesses strong saturable absorption property, with a modulation depth of ∼27%. Interestingly, the SC also exhibits a large two-photon absorption coefficient of ∼0.035 cm GW-1 at 800 nm and an excellent optical limiting behavior. The experimental results indicate that the CsMnBr3 SC is a class of excellent environmentally friendly optoelectronic materials.

20.
Biosci Rep ; 42(10)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36111628

RESUMO

Peimine, a bioactive substance isolated from Chinese medicine Fritillaria, can potentially suppress pulmonary fibrosis (PF); however, its therapeutic mechanism remains unclear. Recent evidence suggests the participation of M2-type macrophages in the pathogenesis of PF. The present study aimed to investigate the effect of peimine on a bleomycin (BLM)-induced PF rat model and the underlying mechanism of this effect. After BLM administration, peimine was administered to rats from day 29 to day 42, with pirfenidone (PFD) as a positive control. H&E and Masson's trichrome stain were used to analyze histological changes. Q-PCR and western blotting were used to measure mRNA levels and protein levels, respectively. High-throughput RNA sequencing (RNA-seq) technology detected the differentially expressed genes (DEGs) regulated by peimine. Our results revealed that peimine treatment significantly ameliorated BLM-induced PF by suppressing histological changes and collagen deposition. In addition, peimine decreased the number of M2 macrophages and the expression of profibrotic factors. RNA-seq results showed that DEGs regulated by peimine in IL-4-induced macrophages were mainly associated with immune system processes, the PI3K/Akt pathway, and the MAPKs pathway. Then, immunofluorescence assay and western blot results demonstrated that peimine treatment suppressed the expression of p-p38 MAPK and p-Akt (s473) and also inhibited the nuclear translocation of p-STAT6. In conclusion, the present study demonstrated that peimine has a protective effect on PF through the suppression of M2 polarization of macrophages by inhibiting the STAT6, p38 MAPK, and Akt signals.


Assuntos
Fibrose Pulmonar , Animais , Bleomicina , Cevanas , Colágeno/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/genética , RNA Mensageiro/metabolismo , Ratos , Fator de Transcrição STAT6/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA