Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 17(10): 6097-6103, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28853900

RESUMO

Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for optoelectronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the density of thermally activated carriers; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs) at room temperature. The effect opens up opportunities for future development of electromechanical transducers based on black phosphorus, and we demonstrate an ultrasensitive strain gauge constructed from black phosphorus thin crystals.

2.
Appl Opt ; 55(24): 6671-9, 2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27556988

RESUMO

This paper describes the application of a modeling approach for precise optical performance prediction of free-form optics-based subsystems on a demonstration model of an eye implant. The simulation model is enhanced by surface data measured on the free-form lens parts. The manufacturing of the free-form lens parts is realized by two different manufacturing processes: ultraprecision diamond machining and microinjection molding. Evaluation of both processes is conducted by a simulation of the optical performance on the basis of their surface measurement comparisons with the nominal geometry. The simulation results indicate that improvements from the process optimization of microinjection molding were obtained for the best manufacturing accuracy.

3.
Appl Opt ; 53(19): 4248-55, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25089987

RESUMO

Microinjection molding is a mass production method to fabricate affordable optical components. However, the intense nature of this process often results in part deformation and uneven refractive index distribution. These two factors limit the precision of replicated optics. In order to understand the influences of injection molding on freeform optical devices, in this study, finite element method (FEM) was employed to investigate the miniature microinjection-molded Alvarez lenses. In addition, an innovative metrology setup was proposed to evaluate the optical wavefront patterns in the molded lenses using an interferometer-based wavefront measurement system. This measurement setup utilized an optical matching liquid to reduce or eliminate the lenses' surface power such that the wavefront pattern with large deviation from the freeform lenses can be measured by a regular wavefront setup. The FEM simulation results were also used to explain the differences between the nominal and experimentally measured wavefront patterns of the microinjection-molded Alvarez lenses. In summary, the proposed method combining simulation and wavefront measurements is shown to be an effective approach for studying injection molding of freeform optics.

4.
Appl Opt ; 52(24): 6022-9, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24085007

RESUMO

Injection molding is an important mass-production tool in the optical industry. In this research our aim is to develop a process of combining ultraprecision diamond turning and injection molding to create a unique low-cost manufacturing process for progressive addition lenses (PALs). In industry, it is a well-known fact that refractive index variation and geometric deformation of injection molded lenses due to the rheological properties of polymers will distort their optical performance. To address this problem, we developed a method for determining the optical aberrations of the injection molded PALs. This method involves reconstructing the wavefront pattern in the presence of uneven refractive index distribution and surface warpage using a finite element method. In addition to numerical modeling, a measurement system based on a Shack-Hartmann wavefront sensor was used to verify the modeling results. The measured spherocylindrical powers and aberrations of the PALs were in good agreement with the model. Consequently, the optical aberrations of injection molded PALs were successfully predicted by finite element modeling. In summary, it was demonstrated in this study that numerically based optimization for PAL manufacturing is feasible.

5.
R Soc Open Sci ; 7(7): 192029, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874608

RESUMO

A novel fabrication method of uniform porous structures on the glass surface is proposed. The hydrofluoric acid fog formed by air-jet atomization etches the glass surface to fabricate nanoporous structure (NPS) on glass surface. This NPS shows the enhanced average light transmittance of approximately 92.9% and the superhydrophilic property with a contact angle less than 1° which presents an excellent anti-fog property. Passivated by fluorosilane, the NPS shows nearly the superhydrophobic property with a contact angle of 141.2°. This fabrication method has shown promising application prospects due to its simplicity, low cost and efficiency, which can be easily applied to large-scale industrial production.

6.
Nat Nanotechnol ; 12(1): 21-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27643457

RESUMO

Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new two-dimensional (2D) material that holds promise for electronic and photonic technologies. Here we experimentally demonstrate that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectral range from the visible to the mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that closely match the absorption edge, indicating that they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other 2D materials in electronic and opto-electronic applications.

7.
Nat Nanotechnol ; 11(7): 593-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27018659

RESUMO

The development of new, high-quality functional materials has been at the forefront of condensed-matter research. The recent advent of two-dimensional black phosphorus has greatly enriched the materials base of two-dimensional electron systems (2DESs). Here, we report the observation of the integer quantum Hall effect in a high-quality black phosphorus 2DES. The high quality is achieved by embedding the black phosphorus 2DES in a van der Waals heterostructure close to a graphite back gate; the graphite gate screens the impurity potential in the 2DES and brings the carrier Hall mobility up to 6,000 cm(2) V(-1) s(-1). The exceptional mobility enabled us to observe the quantum Hall effect and to gain important information on the energetics of the spin-split Landau levels in black phosphorus. Our results set the stage for further study on quantum transport and device application in the ultrahigh mobility regime.

8.
Nat Nanotechnol ; 10(7): 608-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25984835

RESUMO

For decades, two-dimensional electron gases (2DEG) have allowed important experimental discoveries and conceptual developments in condensed-matter physics. When combined with the unique electronic properties of two-dimensional crystals, they allow rich physical phenomena to be probed at the quantum level. Here, we create a 2DEG in black phosphorus--a recently added member of the two-dimensional atomic crystal family--using a gate electric field. The black phosphorus film hosting the 2DEG is placed on a hexagonal boron nitride substrate. The resulting high carrier mobility in the 2DEG allows the observation of quantum oscillations. The temperature and magnetic field dependence of these oscillations yields crucial information about the system, such as cyclotron mass and lifetime of its charge carriers. Our results, coupled with the fact that black phosphorus possesses anisotropic energy bands with a tunable, direct bandgap, distinguish black phosphorus 2DEG as a system with unique electronic and optoelectronic properties.

9.
Nat Nanotechnol ; 9(5): 372-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24584274

RESUMO

Two-dimensional crystals have emerged as a class of materials that may impact future electronic technologies. Experimentally identifying and characterizing new functional two-dimensional materials is challenging, but also potentially rewarding. Here, we fabricate field-effect transistors based on few-layer black phosphorus crystals with thickness down to a few nanometres. Reliable transistor performance is achieved at room temperature in samples thinner than 7.5 nm, with drain current modulation on the order of 10(5) and well-developed current saturation in the I-V characteristics. The charge-carrier mobility is found to be thickness-dependent, with the highest values up to ∼ 1,000 cm(2) V(-1) s(-1) obtained for a thickness of ∼ 10 nm. Our results demonstrate the potential of black phosphorus thin crystals as a new two-dimensional material for applications in nanoelectronic devices.

10.
Nanoscale ; 4(20): 6276-8, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22990308

RESUMO

Bismuth telluride (Bi(2)Te(3)) nanowires with sub-100 nm diameters were synthesized by Au-Sn co-catalyzed chemical vapor deposition. These Bi(2)Te(3) nanowires were single crystals with a hexagonal lattice. The Sn catalyst played a key role in achieving the one-dimensional nanowire structures, while the absence of Sn resulted in other morphologies such as nanoplates, nanooctahedrons and nanospheres. Raman spectra revealed that compared to the Bi(2)Te(3) bulk materials, the Bi(2)Te(3) nanowires displayed an A(1u) spectral peak, implying the breaking of symmetry. The temperature-dependent electrical measurement indicated that these Sn-doped Bi(2)Te(3) nanowires were metallic, with a high conductivity of 1.6 × 10(5) S m(-1) at 300 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA