Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 149(2): 418-425, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078792

RESUMO

Carboxylesterase (CES), a main hydrolysis enzyme family in the human body, plays a crucial role in drug metabolism. Among them, CES1 and CES2 are the primary subtypes, and each exhibits distinct distribution and functions. However, convenient and non-invasive methods for distinguishing them and the real-time monitoring of CES2 are relatively rare, hindering the further understanding of physiological functions and underlying mechanisms. In this study, we have designed, synthesized, and evaluated the first selective bioluminescent probe (CBP 1) for CES2 with high sensitivity, high specificity and rapid reactivity. This probe offers a promising approach for the real-time detection of CES2 and its dynamic fluctuations both in vitro and in vivo.


Assuntos
Hidrolases de Éster Carboxílico , Humanos , Hidrolases de Éster Carboxílico/metabolismo
2.
Angew Chem Int Ed Engl ; 63(12): e202315997, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38282119

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme with diverse biological functions in DNA synthesis. Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme involved in NAD+ biosynthesis in mammals. We developed the first chemical tool for optical control of NAMPT and NAD+ in biological systems using photoswitchable proteolysis-targeting chimeras (PS-PROTACs). An NAMPT activator and dimethylpyrazolazobenzene photoswitch were used to design highly efficient PS-PROTACs, enabling up- and down-reversible regulation of NAMPT and NAD+ in a light-dependent manner and reducing the toxicity associated with inhibitor-based PS-PROTACs. PS-PROTAC was activated under 620 nm irradiation, realizing in vivo optical manipulation of antitumor activity, NAMPT, and NAD+ .


Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Animais , Mamíferos , Quimera de Direcionamento de Proteólise
3.
Med Res Rev ; 43(1): 212-236, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029178

RESUMO

The cost of antitumor drug development is enormous, yet the clinical outcomes are less than satisfactory. Therefore, it is of great importance to develop effective drug screening methods that enable accurate, rapid, and high-throughput discovery of lead compounds in the process of preclinical antitumor drug research. An effective solution is to use the patient-derived xenograft (PDX) tumor animal models, which are applicable for the elucidation of tumor pathogenesis and the preclinical testing of novel antitumor compounds. As a promising screening model organism, zebrafish has been widely applied in the construction of the PDX tumor model and the discovery of antineoplastic agents. Herein, we systematically survey the recent cutting-edge advances in zebrafish PDX models (zPDX) for studies of pathogenesis mechanisms and drug screening. In addition, the techniques used in the construction of zPDX are summarized. The advantages and limitations of the zPDX are also discussed in detail. Finally, the prospects of zPDX in drug discovery, translational medicine, and clinical precision medicine treatment are well presented.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Peixe-Zebra , Ensaios Antitumorais Modelo de Xenoenxerto , Xenoenxertos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças
4.
Anal Chem ; 95(5): 2848-2856, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36700797

RESUMO

For the precise visualization of GPCR, subtype selectivity of turn-on fluorescent ligands is of major relevance. Although there are many thriving ß-adrenergic receptors (ß-ARs) probes, none of them are selective to the ß3-subtype, which severely limits the development of ß3-AR investigations. Using a polyethylene glycol (PEG) chain to conjugate the Py-5 fluorophore with mirabegron, we present here a highly selective fluorescent ligand, H2, for ß3-AR. It was established by the radioligand and NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) binding experiments that molecule H2 has a substantially higher affinity for ß3-AR than the other two subtypes (1/3, 45-fold; 2/3, 16-fold). More crucially, when molecule H2 was incubated with ß3-AR, the turn-on fluorescent signals could be quickly released. The subsequent investigations, which included cell imaging, tissue imaging, and flow-cytometry analysis, proved that molecule H2 may make it possible to quickly and accurately fluorescently identify ß3-AR at different levels. We offer a prospective fluorescent turn-on ligand with exceptional selectivity for ß3-AR as a result of our combined efforts.


Assuntos
Agonistas Adrenérgicos beta , Receptores Adrenérgicos beta , Ligantes , Estudos Prospectivos , Receptores Adrenérgicos beta/química , Receptores Adrenérgicos beta/metabolismo
5.
J Am Chem Soc ; 144(9): 3863-3874, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226805

RESUMO

Natural killer (NK) cells, in addition to their cytotoxicity function, harbor prominent cytokine production capabilities and contribute to regulating autoimmune responses. T-cell immunoglobulin and mucin domain containing protein-3 (Tim-3) is one of the inhibitory receptors on NK cells and a promising immune checkpoint target. We recently found that phosphatidylserine (PS) binding to Tim-3 can suppress NK cell activation. Therefore, based on the therapeutic potential of Tim-3 in NK-cell-mediated diseases, we developed a photoswitchable ligand of Tim-3, termed photophosphatidylserine (phoPS), that mimics the effects of PS. Upon 365 or 455 nm light irradiation, the isomer of phoPS cyclically conversed the cis/trans configuration, resulting in an active/inactive Tim-3 ligand, thus modulating the function of NK cells in vitro and in vivo. We also demonstrated that reversible phoPS enabled optical control of acute hepatitis. Together, phoPS may be an appealing tool for autoimmune diseases and cytokine storms in the future.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Células Matadoras Naturais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Imunoterapia , Células Matadoras Naturais/metabolismo , Ligantes , Ativação Linfocitária
6.
Anal Chem ; 94(19): 7021-7028, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35504022

RESUMO

By fusing several environment-sensitive fluorophores to the pharmacophore mirabegron, a series of new fluorescent ligands for ß-adrenergic receptors (ß-ARs) were produced with a turn-on mechanism and high binding affinity to ß-ARs efficiently. Compound L5 with the pyridinium moiety possessed the most favorable combination of properties after systematic comparison and optimization, including high affinity and acceptable cytotoxicity, remarkable fluorescence enhancement (up to 30-fold) upon binding with ß-ARs, and feasible visualizing ability of ß-ARs in living cells under no-wash conditions. Furthermore, a NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) binding assay based on compound L5 was developed and may be used in high-throughput screening (HTS) in the drug discovery of ß-ARs due to its unique fluorescence spectroscopic features. Overall, as the first environment-sensitive fluorescent ligand, molecule L5 could be a useful tool for understanding the pharmacology of ß-ARs.


Assuntos
Receptores Adrenérgicos beta , Transferência de Energia , Ligantes , Luciferases/metabolismo
7.
Anal Chem ; 94(17): 6441-6445, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35452217

RESUMO

As a neurotransmitter, norepinephrine (NE) is critical for psychiatric conditions, neurodegenerative diseases, and pheochromocytoma. A real-time and noninvasive method for the detection of NE as a tracer to investigate the NE-relevant disease treatment process is urgently desirable. Herein, we successfully developed a turn-on NE bioluminescent probe (NBP), which was grounded on p-toluenethiol deprotectrf by nucleophilic substitution. Compared with other analytes, the NBP exhibited high sensitivity and selectivity in vitro. More importantly, the NBP provides a promising strategy for in vivo imaging of NE in living animals with noninvasive visualization and real-time features.


Assuntos
Neurotransmissores , Norepinefrina , Animais
8.
Chemistry ; 28(34): e202201018, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420241

RESUMO

Enantioselective, intermolecular alkene arylamination was achieved through gold redox catalysis. Screening of ligands revealed chiral P,N ligands as the optimal choice, giving alkene aminoarylation with good yields (up to 80 %) and excellent stereoselectivity (up to 99 : 1 er). As the first example of enantioselective gold redox catalysis, this work confirmed the feasibility of applying a chiral ligand at the gold(I) stage, with the stereodetermining step (SDS) at the gold(III) intermediate, thus opening up a new way to conduct gold redox catalysis with stereochemistry control.


Assuntos
Alcenos , Ouro , Alcenos/química , Catálise , Ouro/química , Ligantes , Oxirredução , Estereoisomerismo
9.
Pharmacol Res ; 177: 106113, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124208

RESUMO

A novel TrxR inhibitor Au-24 and its inhibitory ability to hepatocellular carcinoma in vitro and in vivo is reported herein. Au-24 can suppress HepG2 cells from proliferating by lowering mitochondrial membrane potential (MMP) and increasing reactive oxygen species (ROS) levels, resulting in oxidative stress, which causes DNA damage, autophagy, cell cycle arrest, and apoptosis. This compound can also affect the normal function of apoptosis, MAPK, PI3K/AKT/mTOR, NF-κB, STAT3 signaling pathways. In vivo experiments revealed that Au-24 inhibited HepG2 tumor growth more effectively than AA1 (chloro(triethylphosphine)gold(I)) by decreasing Ki67 and CD31 protein expression and promoting tumor cell apoptosis and necrosis lesions. As a result, Au-24 was found to be a promising candidate as a TrxR inhibitor for the treatment of hepatocellular carcinoma (HCC) in both in vivo and in vitro experiments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
10.
Org Biomol Chem ; 20(7): 1360-1372, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35080225

RESUMO

Bioluminescence imaging (BLI) is a widely applied visual approach for real-time detecting many physiological and pathological processes in a variety of biological systems. Based on the caging strategy, lots of bioluminescent probes have been well developed. While the targets react with recognizable groups, caged luciferins liberate luciferase substrates, which react with luciferase generating a bioluminescent response. Among the various bioluminescent systems, the most widely utilized bioluminescent system is the firefly luciferin system. The H and carboxylic acid of luciferin are critically caged sites. The introduced self-immolative linker extends the applications of probes. Firefly luciferin system probes have been successfully applied for analyzing physiological processes, monitoring the environment, diagnosing diseases, screening candidate drugs, and evaluating the therapeutic effect. Here, we systematically review the general design strategies of firefly luciferin bioluminescence probes and their applications. Bioluminescence probes provide a new approach for facilitating investigation in a diverse range of fields. It inspires us to explore more robust light emission luciferin and novel design strategies to develop bioluminescent probes.


Assuntos
Luciferina de Vaga-Lumes
11.
Org Biomol Chem ; 20(20): 4224-4230, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35551298

RESUMO

The firefly luciferase system is the most extensively utilized bioluminescence system in the field of life science at the moment. In this work, we designed and synthesized a series of alkene-conjugated luciferins to develop new firefly bioluminescence substrates, and further evaluated their activities in vitro and in vivo. It is worth noting that the maximum biological emission wavelength of novel luciferin analogue AL3 ((S,E)-2-(6-hydroxy-5-(3-methoxy-3-oxoprop-1-en-1-yl)benzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) is 100 nm red-shifted compared with D-luciferin, while that of analogue AL4 ((S,E)-2-(5-(2-cyanovinyl)-6-hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) is 75 nm red-shifted. The new substrate AL2 ((S,E)-2-(6-hydroxy-7-(3-methoxy-3-oxoprop-1-en-1-yl)benzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) showed better bioluminescence performance in vivo.


Assuntos
Luciferina de Vaga-Lumes , Luciferinas , Alcenos , Luciferases de Vaga-Lume , Medições Luminescentes/métodos
12.
Angew Chem Int Ed Engl ; 61(35): e202204567, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35791769

RESUMO

Smart conversion of supramolecular structures in vivo is an attractive strategy in cancer nanomedicine, which is usually achieved via specific peptide sequences. Here we developed a lysosomal targeting small-molecule conjugate, PBC, which self-assembles into nanoparticles at physiological pH and smartly converts to nanofibrils in lysosomes of tumor cells. Such a transformation mechanically leads to lysosomal dysfunction, autophagy inhibition, and unusual cytoplasmic vacuolation, thus granting PBC a unique anticancer activity as a monotherapy. Importantly, the photo-activated PBC elicits significant phototoxicity to lysosomes and shows enormous advantages in overcoming autophagy-caused treatment resistance frequently occurring in conventional phototherapy. This improved phototherapy achieves a complete cure of oral cancer xenografts upon limited administration. Our work provides a new paradigm for the construction of nonpeptide nanotransformers with biomedical activities.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia , Humanos , Concentração de Íons de Hidrogênio , Lisossomos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
13.
Anal Chem ; 93(47): 15687-15695, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34783525

RESUMO

The anticancer therapy strategy mediated by tumor-targeting bacteria needs better visualization tools for imaging and monitoring bacteria in vivo. The probiotic strain Escherichia coli Nissle 1917 (EcN), one of the tumor-targeting bacteria, leads to the potential application for cancer therapy. Here, we report the development and application of a live, EcN-based imageable vehicle for noninvasive in vivo bioluminescence imaging in live mice. Firefly luciferase (Fluc) and luciferin-regenerating enzyme (LRE), an enzyme that contributes to stable bioluminescence, were functionally coexpressed in EcN. The recombinant EcN strain expressing the genomically integrated Fluc-LRE cassette was demonstrated to be a valuable tool for generating robust, continuous, and red-shifted bioluminescence for bacterial tracking in vitro and in vivo, thus providing an optical tumor-targeting system for the in vivo study of bacteria-assisted cancer therapy. Additionally, in vivo imaging of the recombinant EcN strain in the mouse intestinal tract indicated the potential of this strain to be used as a tool in the study of gut.


Assuntos
Infecções por Escherichia coli , Probióticos , Animais , Escherichia coli , Luciferases de Vaga-Lume/genética , Camundongos
14.
Anal Chem ; 93(15): 6034-6042, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33830731

RESUMO

The novel fluorescent agonists were discovered herein for α1-adrenergic receptors (α1-ARs) based on photoinduced electron transfer (PeT) off-on switch by conjugating the fluorophore 7-(diethylamino)coumarin-3-carboxylic acid with phenylephrine. After careful evaluation, these probes exhibited efficient binding affinity with α1-ARs and could be applied to selectively imaging α1-ARs or successfully tracing the dynamic process of α1-AR internalization in living cells. Meanwhile, a bioluminescence resonance energy transfer binding assay with these new probes has been well-established and applied. Therefore, these PeT-based on-off agonists may serve as powerful tools for the α1-AR-associated study during drug discovery.


Assuntos
Elétrons , Receptores Adrenérgicos alfa 1 , Transporte de Elétrons , Corantes Fluorescentes , Células HEK293 , Humanos , Fenilefrina , Receptores Adrenérgicos alfa 1/metabolismo
15.
Bioorg Med Chem Lett ; 46: 128148, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34058342

RESUMO

Hydrogen sulfide (H2S), the third gaseous transmitter after CO and NO, is a double-edged sword in the human body. A specific concentration of H2S can attenuate myocardial ischemia-reperfusion injury by preserving mitochondrial function, in contrast, cause illness, including inflammation and stroke. There are already some probes for the real-time monitoring of the level of H2S in the biological environment. However, they have some disadvantages, such as phototoxicity, low sensitivity, and low quantum yield. In this research, by linking 4-dinitrophenyl-ether (DNP), a specific recognition group for H2S, with a chemiluminophore 1,2-dioxetane, we designed and synthesized the probe SCL-1. To tackle the barrier that the traditional chemiluminescent group has a short emission wavelength and is not easy to penetrate deep tissues, an acrylonitrile electron-withdrawing substituent was installed to the ortho-position of the 1,2-dioxanol hydroxy group. According to the same design strategy as SCL-1, the probe SCL-2 was designed with the modified chemiluminescent group. Studies have shown that SCL-2 with electron-withdrawing acrylonitrile has higher luminescence quantum yield and high sensitivity than SCL-1, realizing real-time detection of H2S in vitro and in vivo. The LOD of SCL-2 was 0.185 µM, which was the best among the currently available luminescent probes for detecting H2S. We envisage that SCL-2 may be a practical toolbox for studying the biological functions of H2S and H2S-related diseases.


Assuntos
Corantes Fluorescentes/química , Compostos Heterocíclicos com 1 Anel/química , Sulfeto de Hidrogênio/análise , Corantes Fluorescentes/síntese química , Compostos Heterocíclicos com 1 Anel/síntese química , Humanos , Estrutura Molecular
16.
Bioorg Med Chem Lett ; 43: 128049, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882272

RESUMO

Pyroglutamate aminopeptidase (PGP) specifically cleaves the peptide bond of pyroglutamic acid linked to the N-terminal end of a polypeptide or protein. Previous studies showed that PGP was associated with several physiological processes and diseases especially those involving inflammation. Utilizing a 'caging' strategy, we designed and synthesized a bioluminescence probe (PBL) with a limit-of-detection of 3.7 * 10-4 mU/mL. In vivo imaging in a mouse model of inflammatory liver disease revealed that the probe has excellent sensitivity and selectivity and provides a powerful tool for studying the physiological and pathological processes involving PGP.


Assuntos
Modelos Animais de Doenças , Inflamação/diagnóstico por imagem , Substâncias Luminescentes/química , Piroglutamil-Peptidase I/análise , Animais , Diagnóstico por Imagem , Inflamação/metabolismo , Substâncias Luminescentes/síntese química , Camundongos , Estrutura Molecular , Piroglutamil-Peptidase I/metabolismo
17.
Org Biomol Chem ; 19(36): 7930-7936, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34549229

RESUMO

Nanoluciferase (NLuc) is the emerging commercially available luciferase considering its small size and superior bioluminescence performance. Nevertheless, this bioluminescence system has some limitations, including narrow emission wavelength and single substrate. Herein, a series of novel furimazine derivatives at the C-6 and C-8 positions of the imidazopyrazinone core have been designed and synthesized for extension of the bioluminescence substrates. It should be noted that two compounds, molecules A2 (2-(furan-2-ylmethyl)-6-(4-(hydroxymethyl)phenyl)-8-(phenylthio)imidazo[1,2-a]pyrazin-3(7H)-one) and A3 (2-(furan-2-ylmethyl)-6-(4-amino-3-fluorophenyl)-8-(phenylthio)imidazo[1,2-a]pyrazin-3(7H)-one), display reasonable bioluminescence properties for in vitro and in vivo biological evaluations. In particular, compound A3 can broaden the application of NLuc bioluminescence techniques, especially for in vivo bioluminescent imaging.

18.
J Am Chem Soc ; 142(20): 9460-9470, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32330031

RESUMO

The Ca2+ release-activated Ca2+ (CRAC) channels control many Ca2+-modulated physiological processes in mammals. Hyperactivating CRAC channels are known to cause several human diseases, including Stormorken syndrome. Here, we show the design of azopyrazole-derived photoswitchable CRAC channel inhibitors (designated piCRACs), which enable optical inhibition of store-operated Ca2+ influx and downstream signaling. Moreover, piCRAC-1 has been applied in vivo to alleviate thrombocytopenia and hemorrhage in a zebrafish model of Stormorken syndrome in a light-dependent manner.

19.
Anal Chem ; 92(18): 12282-12289, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32790290

RESUMO

Small-molecule fluorescent probes are powerful tools in chemical analysis and biological imaging. However, as the foundation of probe design, the meager existing set of core fluorophores have largely limited the diversity of current probes. Consequently, there is a high demand to discover fluorophores with new scaffolds and optimize the existing fluorophores. Here, we put forward a facile strategy of heterocyclic N-oxidation to address these challenges. The introduced N-O bond reconstructs the electron "push-pull" system of heterocyclic scaffolds and dramatically improves their photophysical properties by red-shifting the spectra and increasing the Stokes shift. Meanwhile, the heterocyclic N-O bond also enables a function of the fluorescence switch. It can turn on the fluorescence of pyridine and increase the fluorescence of quinoline and, conversely, decrease the fluorescence of acridines and resorufin. As a further practical application, we successfully utilized the quinoline N-oxide scaffold to design fluorogenic probes for H2S (8) and formaldehyde (FA, 9). Given their ultraviolet-visible spectra, both probes with high selectivity and sensitivity could be conveniently used in the naked eye detection of target analytes under illumination with a portable UV lamp. More interestingly, the probes could be effectively used in the imaging of nuclear and cytoplasmic H2S or nuclear and perinuclear FA. This potentially overcomes the weaknesses of existing H2S or FA probes that can only work in the cytoplasm. These interesting findings demonstrate the ability to rapidly expand and optimize the existing fluorophore library through heterocyclic N-oxidation.


Assuntos
Óxidos N-Cíclicos/química , Fluorescência , Corantes Fluorescentes/química , Formaldeído/análise , Sulfeto de Hidrogênio/análise , Bibliotecas de Moléculas Pequenas/química , Óxidos N-Cíclicos/síntese química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química
20.
Anal Chem ; 92(14): 9516-9522, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571022

RESUMO

The first small-molecule fluorescent turn-on probes for detecting PDEδ protein were rationally designed, showing reasonable fluorescent properties and the fluorescent ability has been applied for visualization of the PDEδ protein in living cells and at tissue levels. The qPCR results showed that the mRNA expression of KRAS, PDEδ, AKT1, MAPK1, MEK7, RAF1, and mTOR were downregulated by probes 1-3 through PI3K/AKT/mTOR and MAPK signal pathways. The probes also can downregulate the protein level of pErk and tErk. Therefore, these small-molecule fluorescent probes are expected to be used in the screening of antipancreatic cancer drugs targeting the PDEδ protein, as well as in obtaining a better understanding of the pathological and physiological roles of PDEδ protein.


Assuntos
Corantes Fluorescentes/química , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Animais , Biomarcadores/metabolismo , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Humanos , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Diester Fosfórico Hidrolases/química , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pele/enzimologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA