RESUMO
Netrins, a family of secreted and membrane-associated proteins, can regulate axonal guidance, morphogenesis, angiogenesis, cell migration, cell survival, and tumorigenesis. Four secreted netrins (netrin 1, 3, 4 and 5) and two glycosylphosphatidylinositols-anchored membrane proteins, netrin-G1 and G2, have been identified in mammals. Netrins and their receptors can serve as a biomarker and molecular therapeutic target for pathological differentiation, diagnosis and prognosis of malignant cancers. We review here the potential roles of the netrins family and their receptors in cancer.
Assuntos
Neoplasias , Animais , Netrinas , Transporte Biológico , Carcinogênese , Diferenciação Celular , Proteínas de Membrana , MamíferosRESUMO
BACKGROUND: The global cellular landscape of the tumor microenvironment (TME) combining primary and metastatic liver tumors has not been comprehensively characterized. METHODS: Based on the scRNA-seq and spatial transcriptomic data of non-tumor liver tissues (NTs), primary liver tumors (PTs) and metastatic liver tumors (MTs), we performed the tissue preference, trajectory reconstruction, transcription factor activity inference, cell-cell interaction and cellular deconvolution analyses to construct a comprehensive cellular landscape of liver tumors. RESULTS: Our analyses depicted the heterogeneous cellular ecosystems in NTs, PTs and MTs. The activated memory B cells and effector T cells were shown to gradually shift to inhibitory B cells, regulatory or exhausted T cells in liver tumors, especially in MTs. Among them, we characterized a unique group of TCF7+ CD8+ memory T cells specifically enriched in MTs that could differentiate into exhausted T cells likely driven by the p38 MAPK signaling. With regard to myeloid cells, the liver-resident macrophages and inflammatory monocyte/macrophages were markedly replaced by tumor-associated macrophages (TAMs), with TREM2+ and UBE2C+ TAMs enriched in PTs, while SPP1+ and WDR45B+ TAMs in MTs. We further showed that the newly identified WDR45B+ TAMs exhibit an M2-like polarization and are associated with adverse prognosis in patients with liver metastases. Additionally, we addressed that endothelial cells display higher immune tolerance and angiogenesis capacity, and provided evidence for the source of the mesenchymal transformation of fibroblasts in tumors. Finally, the malignant hepatocytes and fibroblasts were prioritized as the pivotal cell populations in shaping the microenvironments of PTs and MTs, respectively. Notably, validation analyses by using spatial or bulk transcriptomic data in clinical cohorts concordantly emphasized the clinical significance of these findings. CONCLUSIONS: This study defines the ontological and functional heterogeneities in cellular ecosystems of primary and metastatic liver tumors, providing a foundation for future investigation of the underlying cellular mechanisms.
Assuntos
Células Endoteliais , Neoplasias Hepáticas , Humanos , Ecossistema , Neoplasias Hepáticas/genética , Perfilação da Expressão Gênica , Microambiente TumoralRESUMO
BACKGROUND AND OBJECTIVES: Vaccine is the most essential avenue to prevent hepatitis B virus (HBV) infection in infants and preschool children in China, with the largest populations carrying HBV in the world. This study aimed to evaluate the factors associating the response level of anti-HBs in children, providing instructions for HBV prevention clinically. METHODS: The children taking physical examinations in the Third Xiangya Hospital from January 2013 to April 2020 were recruited. Telephone follow-up were adopted to collect further information. Univariate logistic regression was used to analyse the relationship between age and anti-HBs expression. Grouping by age and anti-HBs expression, we used chi-square test and T test to compare qualitative and quantitative data between positive group and negative group in each age subgroup. The meaningful variables (P < 0.10) in chi-square test or T test were further assessed with collinearity and chosen for univariate and multivariate logistic regression analysis by the stepwise backward maximum likelihood method (αin = 0.05, αout = 0.10). RESULTS: A total of 5838 samples (3362 males, 57.6%) were enrolled. In total, the incidence of negative anti-HBs increased with age[OR = 1.037(1.022-1.051)]. Multivariate logistic regression analysis illustrated that anemia[OR = 0.392(0.185-0.835)], age[OR = 2.542(1.961-3.295)] and Vit D[OR = 0.977(0.969-0.984)] in 0.5-2.99 years subgroup, Zinc deficiency[OR = 0.713(0.551-0.923] and age[OR = 1.151(1.028-1.289)] in 3-5.99 years subgroup, Vit D[OR = 0.983(0.971-0.995)] in 12-18 years subgroup had significant association with anti-HBs. CONCLUSIONS: This retrospective study illustrated that age, anemia status, zinc deficiency and vitamin D were associated with anti-HBs expression in specific age groups of children, which could serve as a reference for the prevention of HBV.
Assuntos
Vacinas contra Hepatite B , Hepatite B , Masculino , Lactente , Pré-Escolar , Humanos , Antígenos de Superfície da Hepatite B , Estudos Retrospectivos , Anticorpos Anti-Hepatite B , Hepatite B/epidemiologia , Hepatite B/prevenção & controle , China/epidemiologia , Zinco , Vírus da Hepatite BRESUMO
BACKGROUND: Previously, we demonstrated that pollen chamber formation (PCF) in G. biloba ovules was a process of programmed cell death (PCD) within the nucellar cells at the micropylar end. However, the signal triggering the cascades of the programmed events in these nucellar cells remains unexplored. RESULTS: A transcriptomic strategy was employed to unravel the mechanism underlying the nucellar PCD via the comparative profiles of RNA-seq between pre-PCF and post-PCF ovules. A total of 5599 differentially expressed genes (DEGs) with significance was identified from G. biloba ovules and classified into three main categories of GO annotation, including 17 biological processes, 15 cellular components and 17 molecular functions. KEGG analysis showed that 72 DEGs were enriched in "Plant hormone signal transduction". Furthermore, 99 DEGs were found to be associated with the PCD process, including the genes involved in ethylene signaling pathway, PCD initiation, and PCD execution. Moreover, calcium-cytochemical localization indicated that calcium could play a role in regulating PCD events within the nucellar cells during pollen chamber formation in G. biloba ovules. CONCLUSIONS: A putative working model, consisting of three overlapping processes, is proposed for the nucellar PCD: at the stage of PCD preparation, ethylene signaling pathway is activated for transcriptional regulation of the downstream targets; subsequently, at the stage of PCD initiation, the upregulated expression of several transcription factors, i.e., NAC, bHLH, MADS-box, and MYB, further promotes the corresponding transcript levels of CYTOCHROME C and CALMODULINs, thereby, leads to the PCD initiation via the calcium-dependent signaling cascade; finally, at the stage of PCD execution, some proteases like metacaspases and vacuolar processing enzyme for hydrolysis, together with the process of autophagy, play roles in the clearance of cellular components. Afterwards, a pollen chamber is generated from the removal of specific nucellar cells in the developing ovule.
Assuntos
Apoptose/fisiologia , Perfilação da Expressão Gênica/métodos , Ginkgo biloba/citologia , Ginkgo biloba/metabolismo , Apoptose/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas , Ginkgo biloba/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Hepatocellular carcinoma (HCC) was characterized as being hypervascular. In the present study, we generated a single-cell spatial transcriptomic landscape of the vasculogenic etiology of HCC and illustrated overexpressed Golgi phosphoprotein 73 (GP73) HCC cells exerting cellular communication with vascular endothelial cells with high pro-angiogenesis potential via multiple receptor-ligand interactions in the process of tumor vascular development. Specifically, we uncovered an interactive GP73-mediated regulatory network coordinated with c-Myc, lactate, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway, and endoplasmic reticulum stress (ERS) signals in HCC cells and elucidated its pro-angiogenic roles in vitro and in vivo. Mechanistically, we found that GP73, the pivotal hub gene, was activated by histone lactylation and c-Myc, which stimulated the phosphorylation of downstream STAT3 by directly binding STAT3 and simultaneously enhancing glucose-regulated protein 78 (GRP78)-induced ERS. STAT3 potentiates GP73-mediated pro-angiogenic functions. Clinically, serum GP73 levels were positively correlated with HCC response to anti-angiogenic regimens and were essential for a prognostic nomogram showing good predictive performance for determining 6-month and 1-year survival in patients with HCC treated with anti-angiogenic therapy. Taken together, the aforementioned data characterized the pro-angiogenic roles and mechanisms of a GP73-mediated network and proved that GP73 is a crucial tumor angiogenesis niche gene with favorable anti-angiogenic potential in the treatment of HCC.
RESUMO
The South China tiger (Panthera tigris amoyensis, SCT) is the most critically endangered subspecies of tiger due to functional extinction in the wild. Inbreeding depression is observed among the captive population descended from six wild ancestors, resulting in high juvenile mortality and low reproduction. We assembled and characterized the first SCT genome and an improved Amur tiger (P. t. altaica, AT) genome named AmyTig1.0 and PanTig2.0. The two genomes are the most continuous and comprehensive among any tiger genomes yet reported at the chromosomal level. By using the two genomes and resequencing data of 15 SCT and 13 AT individuals, we investigated the genomic signature of inbreeding depression of the SCT. The results indicated that the effective population size of SCT experienced three phases of decline, ~5.0-1.0 thousand years ago, 100 years ago, and since captive breeding in 1963. We found 43 long runs of homozygosity fragments that were shared by all individuals in the SCT population and covered a total length of 20.63% in the SCT genome. We also detected a large proportion of identical-by-descent segments across the genome in the SCT population, especially on ChrB4. Deleterious nonsynonymous single nucleotide polymorphic sites and loss-of-function mutations were found across genomes with extensive potential influences, despite a proportion of these loads having been purged by inbreeding depression. Our research provides an invaluable resource for the formulation of genetic management policies for the South China tiger such as developing genome-based breeding and genetic rescue strategy.
Assuntos
Tigres , Animais , China , Cromossomos , Genômica , Endogamia , Tigres/genéticaRESUMO
Abscisic acid (ABA) is an important plant hormone that plays multiple roles in regulating growth and development as well as in stress responses in plants. The NCED gene family includes key genes involved in the process of ABA synthesis. This gene family has been found in many species; however, the function of the NCED gene family in cotton is unclear. Here, a total of 23 NCED genes (designated as GhNCED1 to GhNCED23) were identified in cotton. Phylogenetic analysis indicated that the identified NCED proteins from cotton and Arabidopsis could be classified into 4 subgroups. Conserved motif analysis revealed that the gene structure and motif distribution of proteins within each subgroup were highly conserved. qRT-PCR and ABA content analyses indicated that NCED genes exhibited stage-specific expression patterns at tissue development stages. GhNCED5, GhNCED6 and GhNCED13 expression was similar to the change in ABA content, suggesting that this gene family plays a role in ABA synthesis. These results provide a better understanding of the potential functions of GhNCED genes.
Assuntos
Perfilação da Expressão Gênica , Genômica , Gossypium/genética , Proteínas de Plantas/genética , Motivos de Aminoácidos , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Gossypium/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/químicaRESUMO
NADPH oxidases (NOXs) have been known as respiratory burst oxidase homologues (RBOHs) in plants. To characterize the evolutionary relationships and functions of RBOHs in Brassica rapa, 134 RBOH homologues were identified from 13 plant species, including 14 members (namely BrRBOH01-14) from B. rapa. There presented 47 gene-pairs among 14 BrRBOHs and other RBOHs, consisting of five pairs within B. rapa, and 15 pairs between B. rapa and Arabidopsis thaliana. Together with phylogenetic analysis, the results suggested that whole-genome duplication might have played an important role in BrRBOH gene expansion, and these duplication events occurred after the divergence of the eudicot and the monocot lineages examined. Furthermore, gene expression of RBOHs in both A. thaliana and B. rapa were assayed via qRT-PCR. An RBOH gene, BrRBOH13 in B. rapa, was transformed into wild-type Arabidopsis plants. The transgenic lines with the overexpressed level of BrRBOH13 conferred to be more tolerant to heavy metal lead (0.05 mM) than wild-type plants. Overall, this integrated analysis at genome-wide level has provided some information on the evolutionary relationships among plant-specific NOXs and the coordinated diversification of gene structure and function in B. rapa.
RESUMO
Breast cancer (BC) is the most common female cancer found worldwide. It is responsible for 25% of all cancer patients in females. Hereditary BC accounts for about 5-10% of all BC cases. The breast cancer 1 gene (BRCA1) and the breast cancer 2 gene (BRCA2) are the two most-studied BC susceptibility genes. Genetic testing for disease-causing mutations in BRCA1, BRCA2, and other BC susceptibility genes is strongly recommended for members of families having a BC family history. The present study found a heterozygous c.5722_5723del mutation in the BRCA2 exon 11 of a large Han-Chinese BC family using whole exome sequencing and Sanger sequencing. It may cause DNA double-strand breaks repair dysfunction by disturbing homologous recombination, further resulting in BC. The study findings may help supplement and further improve genetic testing strategies and BC risk estimation methodologies in China.
Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Mutação , Povo Asiático/genética , Quebras de DNA de Cadeia Dupla , Feminino , Heterozigoto , Humanos , Masculino , Linhagem , Sequenciamento do ExomaRESUMO
Energy interruption and infrastructure damage are the common characteristic between the snow disaster occurred in some southern provinces of China and the 5.12 Wenchuan earthquake in China in 2008. This paper summaries the effects on medical and health institutions caused by interruption of energy flow and damaged infrastructure, shares the preparation and response practices, experience, and lessons of medical disasters, and gives suggestions about how to prepare and response for medical and health institutions when energy flow is interrupted and infrastructure is damaged.