Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Phys Chem Chem Phys ; 26(22): 16091-16095, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780310

RESUMO

In light of recently reported monovalent lanthanide in borozene complexes LnB8- (Ln = La, Pr, Tb, Tm, Yb), the corresponding AnB8- (An = Ac, Pa, Bk, Md, No) actinide species within the same group were theoretically investigated in respect of oxidation state, stability, electronic structure and chemical bonding pattern. Our investigations reveal the feasibility of actinides, especially for the late actinide borozene compounds (BkB8-, MdB8-, NoB8-) adopting a monovalent oxidation state of +I, a phenomenon fine-tuned by the doubly aromatic borozene B82-. Early actinides (AcB8-, PaB8-) however exhibit a tendency towards higher trivalent oxidation states.

2.
Phys Chem Chem Phys ; 26(24): 17370-17382, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860760

RESUMO

The concept of aromaticity is primarily invented to account for the high stability of conjugated organic compounds that possess a specific structural and chemical stability with (4n + 2) π electrons. In 1988, quasi-aromaticity was theoretically proposed for the Mo3S44+ core in the Mo3(µ3-S)(µ-S)3(χ-dtp)3(µ-dtp) L compound (χ: chelating ligand; dtp: (EtO)2PS2-) illustrated by canonical molecular orbitals. However, the origin of the quasi-aromaticity and chemical bonding remains ambiguous, lacking a thorough analysis in terms of stability and quantitative measurement of the aromatic character. Thus, in this work, we systematically reported the electronic structure and aromaticity of a series of polynuclear metal chalcogenide clusters [M3X4(H2O)9]4+ (M = Cr, Mo, W, and Sg; X = O, S, Se, and Te) to explore an efficient tool of NICS index values at specific points to measure the quasi-aromaticity and to figure out the (d-p-d) π three-center bonding as the predominant origin from the arrangement of three Mo atoms and three bridged X atoms. Interestingly, derived from the Mo3⋯S3 quasi-plane, the extended sandwich cluster model of a S3⋯Mo3⋯S3 (Mo3S6) structure can be seen as the seed unit of the popular MoS2 nanomaterials, with the resemblance between both molecular and periodic systems regarding geometries, electronic structures, and chemical bonding. Additionally, the highly symmetric Mo3S4 core in [Mo3X4(H2O)9]4+ can be arranged in a staggered and stacked manner to create the Mo6S82- building block, corresponding to the crystalline structures in BaMo6S8 Chevrel phases, albeit with slight deformations. But the neutral Mo6S8 cluster can be seen as the seed structure for the Mo3S4 periodic materials for the high resemblance in terms of geometry, electronic structures and chemical bonding. Drawing upon the observed similarities between cluster models and materials, we propose a new concept termed "cluster-assembly" materials. This concept involves the expansion from a high-symmetry and/or aromatic stable cluster seed unit to form the corresponding derivative materials, presenting an alternative paradigm for investigating crystals and enriching our comprehension of the stabilities exhibited by both gas-phase clusters and solid-state materials. The concept of "cluster-assembly" materials not only contributes to the formulation of design strategies for novel materials or stable clusters but also provides valuable insights into the extension of periodic aromaticity.

3.
Proc Natl Acad Sci U S A ; 117(52): 32954-32961, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318176

RESUMO

Water under nanoconfinement at ambient conditions has exhibited low-dimensional ice formation and liquid-solid phase transitions, but with structural and dynamical signatures that map onto known regions of water's phase diagram. Using terahertz (THz) absorption spectroscopy and ab initio molecular dynamics, we have investigated the ambient water confined in a supramolecular tetrahedral assembly, and determined that a dynamically distinct network of 9 ± 1 water molecules is present within the nanocavity of the host. The low-frequency absorption spectrum and theoretical analysis of the water in the Ga4L612- host demonstrate that the structure and dynamics of the encapsulated droplet is distinct from any known phase of water. A further inference is that the release of the highly unusual encapsulated water droplet creates a strong thermodynamic driver for the high-affinity binding of guests in aqueous solution for the Ga4L612- supramolecular construct.


Assuntos
Gálio/química , Simulação de Dinâmica Molecular , Água/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes
4.
Small ; 17(35): e2102125, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34297478

RESUMO

Single-atom catalysts (SACs) with specific coordination environment are expected to be efficient electrocatalysts for oxygen reduction reaction (ORR). Herein, NiN4 C10 coordination site is constructed through encapsulating Ni2+ into the cavity of ZIF-8 as a self-sacrificing precursor and anchoring it on 3D N-doped carbon frameworks. The NiN4 C10 catalyst shows excellent ORR activity and stability, with a high half-wave potential (0.938 V vs RHE), which is currently the best performances in Ni-based SACs. The remarkable performance with high ORR activity in alkaline solution is attributed to the single-atom nickel active sites with faster electron transport and suitable electronic structure. Moreover, the power density of zinc-air battery assembled by NiN4 C10 as cathode is 47.1% higher than that of the commercial Pt/C. This work not only provides a facile method to prepare extremely active Ni-based SACs, but also studies the intrinsic mechanism toward the oxygen reduction reaction under alkaline condition.

5.
Phys Chem Chem Phys ; 23(15): 9394-9406, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33885049

RESUMO

Density Functional Theory (DFT) is currently the most tractable choice of theoretical model used to understand the mechanistic pathways for electrocatalytic processes such as CO2 or CO reduction. Here, we assess the performance of two DFT functionals designed specifically to describe surface interactions, RTPSS and RPBE, as well as two popular meta-GGA functionals, SCAN and B97M-rV, that have not been a priori optimized for better interfacial properties. We assess all four functionals against available experimental data for prediction of bulk and bare surface properties on four electrocatalytically relevant metals, Au, Ag, Cu, and Pt, and for binding CO to surfaces of these metals. To partially mitigate issues such as thermal and anharmonic corrections associated with comparing computations with experiments, molecular benchmarks against high level quantum chemistry are reported for CO complexes with Au, Ag, Cu and Pt atoms, as well as the CO-water complex and the water dimer. Overall, we find that the surface modified RPBE functional performs reliably for many of the benchmarks examined here, and the meta-GGA functionals also show promising results. Specifically B97M-rV predicts the correct site preference for CO binding on Ag and Au (the only functional tested here to do so), while RTPSS performs well for surface relaxations and binding of CO on Pt and Cu.

6.
J Phys Chem A ; 125(12): 2622-2630, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33739102

RESUMO

Inverse-sandwich structures have been observed recently for dilanthanide boride clusters, in which two Ln atoms sandwich a monocyclic Bx ring for x = 7-9. An interesting question is if larger Bx rings are possible to form such inverse-sandwich clusters. Here we address this question by investigating La2B10- and La2B11- using photoelectron spectroscopy and ab initio quantum chemical calculations. Photoelectron spectra of La2B10- and La2B11- show complicated, but well-resolved, spectral features that are used to compare with theoretical calculations. We have found that global minimum structures of the two clusters are based on the octa-boron ring. The global minimum of La2B10- consists of two chiral enantiomers with C1 symmetry, which can be viewed as adding a B2 unit off-plane to the B8 ring, whereas that of La2B11- can be viewed as adding a B3 unit in-plane to the B8 ring in a second coordination shell. Chemical bonding analyses reveal localized B-B bonds on the edge of the clusters and delocalized bonds in the expanded boron frameworks. The interactions between the La atoms and the boron frameworks include the unique (d-p)δ bonding, which was found to be the key for inverse-sandwich complexes with monocyclic boron rings. The current study confirms that the largest monocyclic boron ring to form the inverse-sandwich structures is B9 and provide insights into the structural evolutions of larger lanthanide boride clusters.

7.
Proc Natl Acad Sci U S A ; 115(30): E6972-E6977, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29987036

RESUMO

While boron forms a wide range of metal borides with important industrial applications, there has been relatively little attention devoted to lanthanide boride clusters. Here we report a joint photoelectron spectroscopy and quantum chemical study on two octa-boron di-lanthanide clusters, Ln2B8- (Ln = La, Pr). We found that these clusters form highly stable inverse sandwich structures, [Ln-B8-Ln]-, with strong Ln and B8 bonding via interactions between the Ln 5d orbitals and the delocalized σ and π orbitals on the B8 ring. A (d-p)δ bond, involving the 5dδ and the antibonding π orbital of the B8 ring, is observed to be important in the Ln-B8 interactions. The highly symmetric inverse sandwich structures are overwhelmingly more stable than any other isomers. Upon electron detachment, the (d-p)δ orbitals become half-filled, giving rise to a triplet ground state for neutral La2B8 In addition to the two unpaired electrons in the (d-p)δ orbitals upon electron detachment, the neutral Pr2B8 complex also contains two unpaired 4f electrons on each Pr center. The six unpaired spins in Pr2B8 are ferromagnetically coupled to give rise to a septuplet ground state. The current work suggests that highly magnetic Ln…B8…Ln inverse sandwiches or 1D Ln…B8…Ln nanowires may be designed with novel electronic and magnetic properties.

8.
Angew Chem Int Ed Engl ; 59(17): 6923-6928, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32017342

RESUMO

Through reaction of beryllium dimers with carbon monoxide, a carbonyl complex BeBeCO is formed in solid neon. Upon visible light excitation, the BeBeCO complex rearranges to a BeCOBe isomer, which further isomerizes to a low-energy BeOBeC species under UV-visible light excitation. These species are identified on the basis of infrared absorption spectroscopy with isotopic substitutions and quantum chemical studies. The BeOBeC molecule is characterized to be a multiple radical species having an electronic quintet ground state featuring an unusual quartet carbyne unit with three unpaired electrons on the carbon center. Bonding analysis indicates that the strong Pauli repulsion between carbon 2s lone pair electrons and the σ electrons of the BeOBe fragment significantly weakens the Be-C bonding and destabilizes the triplet state of the BeOBeC radical with a doublet carbyne unit. The three-center π-bonding of BeOBe is also found to play a role in stabilizing the quartet carbyne.

9.
Angew Chem Int Ed Engl ; 59(42): 18586-18590, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32643319

RESUMO

The direct, nonoxidative conversion of methane on a silica-confined single-atom iron catalyst is a landmark discovery in catalysis, but the proposed gas-phase reaction mechanism is still open to discussion. Here, we report a surface reaction mechanism by computational modeling and simulations. The activation of methane occurs at the single iron site, whereas the dissociated methyl disfavors desorption into gas phase under the reactive conditions. In contrast, the dissociated methyl prefers transferring to adjacent carbon sites of the active center (Fe1 ©SiC2 ), followed by C-C coupling and hydrogen transfer to produce the main product (ethylene) via a key -CH-CH2 intermediate. We find a quasi Mars-van Krevelen (quasi-MvK) surface reaction mechanism involving extracting and refilling the surface carbon atoms for the nonoxidative conversion of methane on Fe1 ©SiO2 and this surface process is identified to be more plausible than the alternative gas-phase reaction mechanism.

10.
Inorg Chem ; 58(1): 411-418, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30543295

RESUMO

Lanthanide elements typically exhibit a +III oxidation state (OS) in chemical compounds with a few in +IV or even +V OS. Although lanthanides with +II OS have been observed recently in organometallic compounds, +I OS is extremely rare. Using a joint photoelectron spectroscopy and quantum theoretical study, we have found two low OS lanthanides in doped boron clusters, PrB3- and PrB4-. These two clusters are shown to have planar structures, in which the Pr atom is bonded to the aromatic boron clusters via two Pr-B σ bonds. Chemical bonding and electronic structure analyses reveal that the Pr atom is in a very low OS in the two boride clusters: +II in PrB3- and +I in PrB4-. The current finding suggests that there should exist a whole class of boride complexes featuring rather low-valent lanthanides and expands the frontier of lanthanide chemistry.

11.
J Phys Chem A ; 123(25): 5317-5324, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31204479

RESUMO

Transition-metal-centered monocyclic boron wheel clusters (M©B n q) represent a family of interesting borometallic compounds with double aromaticity. A variety of early and late transition metal atoms have been found to form such structures with high symmetries and various B n ring sizes. Here we report a combined photoelectron spectroscopy and quantum-chemistry theoretical study of two M©B n- clusters from the middle of the transition metal series: Re©B8- and Re©B9-. Global minimum structure searches revealed that ReB8- adopts a pseudo- C8 v structure while ReB9- is a perfectly planar D9 h molecular wheel. Chemical bonding analyses showed that both clusters exhibit σ and π double aromaticity and obey the electronic design principle for metal-centered borometallic molecular wheels. The central Re atoms are found to possess unusually low oxidation states of +I in Re©B8- and +II in Re©B9-, i.e., the Re atom behaves similarly to late transition metal elements (Ru, Fe, Co, Rh, Ir) in the M©B n- molecular wheels. These two clusters become new members of the family of transition-metal-centered monocyclic borometallic molecular wheels, which may be viable for chemical syntheses with appropriate ligands.

12.
Angew Chem Int Ed Engl ; 58(43): 15526-15531, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31478324

RESUMO

Photothermal therapy at the NIR-II biowindow (1000-1350 nm) is drawing increasing interest because of its large penetration depth and maximum permissible exposure. Now, the supramolecular radical dimer, fabricated by N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole radical cation (MPT.+ ) and cucurbit[8]uril (CB[8]), achieves strong absorption at NIR-II biowindow. The supramolecular radical dimer (2MPT.+ -CB[8]) showed highly efficient photothermal conversion and improved stability, thus contributing to the strong inhibition on HegG2 cancer cell under 1064 nm irradiation even penetrating through chicken breast tissue. This work provides a novel approach to construct NIR-II chromophore by tailor-made assembly of organic radicals. It is anticipated that this study provides a new strategy to achieve NIR-II photothermal therapy and holds promises in luminescence materials, optoelectronic materials, and also biosensing.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Radicais Livres/química , Imidazóis/química , Raios Infravermelhos , Substâncias Macromoleculares/química , Tiazóis/química , Adsorção , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cristalografia por Raios X , Dimerização , Células Hep G2 , Humanos , Hipertermia Induzida/métodos , Substâncias Macromoleculares/farmacologia , Microscopia Confocal , Conformação Molecular , Teoria Quântica
13.
Inorg Chem ; 57(20): 12999-13008, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30260645

RESUMO

Solid-state lanthanide (Ln) borides of the simple LnB6 composition not only exhibit exciting physical behavior, in particular magnetic properties, but their electronic structure and chemical bonding are particularly intriguing as well. To shed more light on the latter, we have performed quantum-chemical (DFT+ U) electronic-structure calculations and bonding analyses of the entire LnB6 series with Ln from La to Lu. Trivially, the boron framework is held together by the B 2sp orbitals, and this framework bonds to the Ln atoms via covalent-ionic interactions. The Ln 4f electrons, however, are decisive for the magnetic properties. In more detail, the effective charges of the Ln atoms as calculated by (Mulliken or Löwdin) occupation numbers of the 6s/5d/4f orbitals are compatible with experimentally assigned oxidation numbers. The shorter inter-octahedral B-B bonds, dominated by 2s-2p interactions, turn out to be stronger than the intra-octahedral B-B bonding with a more 2p-2p-like character. Interestingly, there are strong structural similarities between the LnB6 motif studied here and gas-phase Ln2B8 species showing inverse sandwich structures, and these similarities are also reflected in the electronic structure. In particular, Ln2B8 is predicted to have a large electron affinity. Hence, this work aims at providing an intrinsic link between gas-phase complexes and solid-state crystal structures in order to better understand the former species.

14.
Inorg Chem ; 57(9): 5499-5506, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29687722

RESUMO

The periodic table provides a fundamental protocol for qualitatively classifying and predicting chemical properties based on periodicity. While the periodic law of chemical elements had already been rationalized within the framework of the nonrelativistic description of chemistry with quantum mechanics, this law was later known to be affected significantly by relativity. We here report a systematic theoretical study on the chemical bonding pattern change in the coinage metal dimers (Cu2, Ag2, Au2, Rg2) due to the relativistic effect on the superheavy elements. Unlike the lighter congeners basically demonstrating ns- ns bonding character and a 0g+ ground state, Rg2 shows unique 6d-6d bonding induced by strong relativity. Because of relativistic spin-orbit (SO) coupling effect in Rg2, two nearly degenerate SO states, 0g+ and 2u, exist as candidate of the ground state. This relativity-induced change of bonding mechanism gives rise to various unique alteration of chemical properties compared with the lighter dimers, including higher intrinsic bond energy, force constant, and nuclear shielding. Our work thus provides a rather simple but clear-cut example, where the chemical bonding picture is significantly changed by relativistic effect, demonstrating the modified periodic law in heavy-element chemistry.

15.
Inorg Chem ; 57(7): 4125-4134, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29558121

RESUMO

The following gas-phase uranyl/12-crown-4 (12C4) complexes were synthesized by electrospray ionization: [UO2(12C4)2]2+ and [UO2(12C4)2(OH)]+. Collision-induced dissociation (CID) of the dication resulted in [UO2(12C4-H)]+ (12C4-H is a 12C4 that has lost one H), which spontaneously adds water to yield [UO2(12C4-H)(H2O)]+. The latter has the same composition as complex [UO2(12C4)(OH)]+ produced by CID of [UO2(12C4)2(OH)]+ but exhibits different reactivity with water. The postulated structures as isomeric [UO2(12C4-H)(H2O)]+ and [UO2(12C4)(OH)]+ were confirmed by comparison of infrared multiphoton dissociation (IRMPD) spectra with computed spectra. The structure of [UO2(12C4-H)]+ corresponds to cleavage of a C-O bond in the 12C4 ring, with formation of a discrete U-Oeq bond and equatorial coordination by three intact ether moieties. Comparison of IRMPD and computed IR spectra furthermore enabled assignment of the structures of the other complexes. Theoretical studies of the chemical bonding features of the complexes provide an understanding of their stabilities and reactivities. The results reveal bonding and structures of the uranyl/12C4 complexes and demonstrate the synthesis and identification of two different isomers of gas-phase uranyl coordination complexes.

16.
J Phys Chem A ; 122(10): 2816-2822, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29466003

RESUMO

Quantum chemical calculations using ab initio methods at the CCSD(T) level and density functional theory have been carried out for the title molecules. The electronic structures of the molecules were analyzed with a variety of charge and energy decomposition methods. The equilibrium geometries of the M2O2 rhombic clusters exhibit very short distances between the transannular metal atoms M = Be, Mg, Ca. The calculated distances are close to standard values between double and triple bonds, but there are no chemical M-M bonds. The metal atoms M carry large positive partial charges, which are even bigger than in diatomic MO. The valence electrons of M are essentially shifted toward oxygen in M2O2, which makes it possible that there is practically no electronic charge in the region between the metal atoms. The bond dissociation energies for fragmentation of M2O2 into two metal oxides MO are very large. The metal-oxide bonds in the rhombic clusters are shorter and stronger than in diatomic MO. A detailed analysis of the electronic structure suggests that there is no significant direct M-M interaction in the M2O2 rhombic clusters, albeit weak three-center M-O-M bonding.

17.
Angew Chem Int Ed Engl ; 57(12): 3242-3245, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29314484

RESUMO

The concept of oxidation state (OS) is based on the concept of Lewis electron pairs, in which the bonding electrons are assigned to the more electronegative element. This approach is useful for keeping track of the electrons, predicting chemical trends, and guiding syntheses. Experimental and quantum-chemical results reveal a limit near +8 for the highest OS in stable neutral chemical substances under ambient conditions. OS=+9 was observed for the isolated [IrO4 ]+ cation in vacuum. The prediction of OS=+10 for isolated [PtO4 ]2+ cations is confirmed computationally for low temperatures only, but hasn't yet been experimentally verified. For high OS species, oxidation of the ligands, for example, of O-2 with formation of . O-1 and O-O bonds, and partial reduction of the metal center may be favorable, possibly leading to non-Lewis type structures.

18.
Chemistry ; 23(9): 2035-2039, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28009065

RESUMO

Short interatomic distances below standard values for a single bond are usually identified with double or triple bonds. The synthesis and spectroscopic characterization of a molecule is reported where the distance between two beryllium atoms is shorter than a standard double bond but there is no bond. The cyclic diberyllium dioxide Be2 O2 molecule, which is coordinated by two noble gas atoms in Ng-Be2 O2 -Ng' (Ng, Ng'=Ne, Ar, Kr, Xe) was isolated and spectroscopically identified in low-temperature matrices. The complexes possess very short Be-Be distances, but the analysis of the electronic structure reveals that there is no chemical bond.

19.
Angew Chem Int Ed Engl ; 56(24): 6932-6936, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28485836

RESUMO

We report the preparation of UFe(CO)3- and OUFe(CO)3- complexes using a laser-vaporization supersonic ion source in the gas phase. These compounds were mass-selected and characterized by infrared photodissociation spectroscopy and state-of-the-art quantum chemical studies. There are unprecedented triple bonds between U 6d/5f and Fe 3d orbitals, featuring one covalent σ bond and two Fe-to-U dative π bonds in both complexes. The uranium and iron elements are found to exist in unique formal U(I or III) and Fe(-II) oxidation states, respectively. These findings suggest that there may exist a whole family of stable df-d multiple-bonded f-element-transition-metal compounds that have not been fully recognized to date.

20.
Angew Chem Int Ed Engl ; 56(24): 6916-6920, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481035

RESUMO

The structure and bonding of a Pr-doped boron cluster (PrB7- ) are investigated using photoelectron spectroscopy and quantum chemistry. The adiabatic electron detachment energy of PrB7- is found to be low [1.47(8) eV]. A large energy gap is observed between the first and second detachment features, indicating a highly stable neutral PrB7 . Global minimum searches and comparison between experiment and theory show that PrB7- has a half-sandwich structure with C6v symmetry. Chemical bonding analyses show that PrB7- can be viewed as a PrII [η7 -B73- ] complex with three unpaired electrons, corresponding to a Pr (4f2 6s1 ) open-shell configuration. Upon detachment of the 6s electron, the neutral PrB7 cluster is a highly stable PrIII [η7 -B73- ] complex with Pr in its favorite +3 oxidation state. The B73- ligand is found to be highly stable and doubly aromatic with six delocalized π and six delocalized σ electrons and should exist for a series of lanthanide MIII [η7 -B73- ] complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA