Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(1): 502-544, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099340

RESUMO

Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with designable structures and functions. The interconnected organic monomers, featuring pre-designed symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities, leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices. Our review provides a comprehensive account of the latest advancements in the principles, methods, and techniques for structural design and determination of COFs. These cutting-edge approaches enable the rational design and precise elucidation of COF structures, addressing fundamental physicochemical challenges associated with host-guest interactions, topological transformations, network interpenetration, and defect-mediated catalysis.

2.
J Am Chem Soc ; 146(11): 7616-7627, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446772

RESUMO

Natural products and their analogues are significant sources of therapeutic lead compounds. However, synthetic strategies for generating large collections of these molecules remain a significant challenge. The most difficult step in their synthesis is the design of a common intermediate that can be easily transformed into natural products belonging to different families. This study demonstrates the evolution of synthetic tactics designed to assemble the functionalized piperidines present in indole alkaloids from a common intermediate. More importantly, we also report a previously unknown Ir- and Er-catalyzed dehydrogenative spirocyclization reaction that enables direct access to spirocyclic oxindole alkaloids. As a practical application, the asymmetric total syntheses of 29 natural alkaloids belonging to different families were accomplished by following a uniform synthetic route. The proposed methodology extends the capability of the iridium-catalyzed dehydrogenative coupling reaction to the realm of indole-alkaloid synthesis and provides new opportunities for the efficient preparation of natural product-like molecules.


Assuntos
Alcaloides , Produtos Biológicos , Humanos , Estereoisomerismo , Alcaloides Indólicos , Oxindóis
3.
Nanotechnology ; 35(15)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38150731

RESUMO

The development of effective and stable cathode electrocatalysts is highly desired for fuel cells. Controlling the composition and morphology of Pd-based materials can provide a great opportunity to improve their oxygen reduction reaction (ORR) performance. Here, we report the synthesis of hexagonal close-packed (hcp) Pd2B nanosheet assemblies (Pd2B NAs) via the boronation reaction between as-synthesized Pd NAs and N,N-dimethylformamide. The hcp Pd2B NAs with uniform pore distribution can provide sufficient active sites for ORRs. The insertion of B atoms can induce the phase transition from face-centered cubic structure to hcp structure, as the most thermodynamically stable phase in the Pd-B alloy, which is beneficial for enhancing the ORR stability and toxicity resistance. Therefore, the hcp Pd2B NAs exhibit superior mass activity, specific activity and excellent stability for ORR. The present strategy of boron-intercalation-triggered crystalline transition of Pd-based nanomaterials is valuable for the design of metal-nonmetal catalysts with enhanced performance.

4.
Angew Chem Int Ed Engl ; 63(6): e202313859, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38055195

RESUMO

Exploitation of key protected wild plant resources makes great sense, but their limited populations become the major barrier. A particular strategy for breaking this barrier was inspired by the exploration of a resource-saving fungal endophyte Penicillium sp. DG23, which inhabits the key protected wild plant Schisandra macrocarpa. Chemical studies on the cultures of this strain afforded eight novel indole diterpenoids, schipenindolenes A-H (1-8), belonging to six diverse skeleton types. Importantly, semisyntheses suggested some key nonenzymatic reactions constructing these molecules and provided targeted compounds, in particular schipenindolene A (Spid A, 1) with low natural abundance. Remarkably, Spid A was the most potent HMG-CoA reductase (HMGCR) degrader among the indole diterpenoid family. It degraded statin-induced accumulation of HMGCR protein, decreased cholesterol levels and acted synergistically with statin to further lower cholesterol. Mechanistically, transcriptomic and proteomic profiling suggested that Spid A potentially activated the endoplasmic reticulum-associated degradation (ERAD) pathway to enhance the degradation of HMGCR, while simultaneously inhibiting the statin-activated expression of many key enzymes in the cholesterol and fatty acid synthesis pathways, thereby strengthening the efficacy of statins and potentially reducing the side effects of statins. Collectively, this study suggests the potential of Spid A for treating cardiovascular disease.


Assuntos
Acil Coenzima A , Inibidores de Hidroximetilglutaril-CoA Redutases , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Degradação Associada com o Retículo Endoplasmático , Proteômica , Colesterol/metabolismo , Indóis
5.
Angew Chem Int Ed Engl ; : e202409556, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988065

RESUMO

Platinum-based supported intermetallic alloys (IMAs) demonstrate exceptional performance in catalytic propane dehydrogenation (PDH) primarily because of their remarkable resistance to coke formation. However, these IMAs still encounter a significant hurdle in the form of catalyst deactivation. Understanding the complex deactivation mechanism of supported IMAs, which goes beyond conventional coke deposition, requires meticulous microscopic structural elucidation. In this study, we unravel a nonclassical deactivation mechanism over a PtZn/γ-Al2O3 PDH catalyst, dictated by the PtZn to Pt3Zn nanophase transformation accompanied with dezincification. The physical origin lies in the metal support interaction (MSI) that enables strong chemical bonding between hydroxyl groups on the support and Zn sites on the PtZn phase to selectively remove Zn species followed by the reconstruction towards Pt3Zn phase. Building on these insights, we have devised a solution to circumvent the deactivation by passivating the MSI through surface modification of γ-Al2O3 support. By exchanging protons of hydroxyl groups with potassium ions (K) on the γ-Al2O3 support, such a strategy significantly minimizes the dezincification of PtZn IMA via diminished metal-support bonding, which dramatically reduces the deactivation rate from 0.2044 to 0.0587 h-1.

6.
Small ; 19(25): e2207852, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929583

RESUMO

The utilization of thermodynamically favorable sulfur oxidation reaction (SOR) as an alternative to sluggish oxygen evolution reaction is a promising technology for low-energy H2 production while degrading the sulfur source from wastewater. Herein, amorphous/crystalline S-doped Pd nanosheet arrays on nickel foam (a/c S-Pd NSA/NF) is prepared by S-doping crystalline Pd NSA/NF.  Owing to the ultrathin amorphous nanosheet structure and the incorporation of S atoms, the a/c S-Pd NSA/NF provides a large number of active sitesand the optimized electronic structure, while exhibiting outstanding electrocatalytic activity in hydrogen evolution reaction (HER) and SOR. Therefore, the coupling system consisting of SOR-assisted HER can reach a current density of 100 mA cm-2 at 0.642 V lower than conventional electrolytic water by 1.257 V, greatly reducing energy consumption. In addition, a/c S-Pd NSA/NF can generate H2 over a long period of time while degrading S2- in water to the value-added sulfur powder, thus further reducing the cost of H2 production. This work proposes an attractive strategy for the construction of an advanced electrocatalyst for H2 production and utilization of toxic sulfide wastewater by combining S-doping induced partial amorphization and ultrathin metal nanosheet arrays.

7.
Small ; 19(16): e2207305, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670091

RESUMO

Selective electrochemical reduction of CO2 into fuels or chemical feedstocks is a promising avenue to achieve carbon-neutral goal, but its development is severely limited by the lack of highly efficient electrocatalysts. Herein, cation-exchange strategy is combined with electrochemical self-reconstruction strategy to successfully develop diethylenetriamine-functionalized mosaic Bi nanosheets (mBi-DETA NSs) for selective electrocatalytic CO2 reduction to formate, delivering a superior formate Faradaic efficiency of 96.87% at a low potential of -0.8 VRHE . Mosaic nanosheet morphology of Bi can sufficiently expose the under-coordinated Bi active sites and promote the activation of CO2 molecules to form the OCHO- * intermediate. Moreover, in situ attenuated total reflectance infrared spectra further corroborate that surface chemical microenvironment modulation of mosaic Bi nanosheets via DETA functionalization can improve CO2 adsorption on the catalyst surface and stabilize the key intermediate (OCHO- *) due to the presence of amine groups, thus facilitate the CO2 -to-HCOO- reaction kinetics and promote formate formation.

8.
Small ; 19(29): e2300001, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058094

RESUMO

Challenges remain in the development of highly efficient catalysts for selective electrochemical transformation of carbon dioxide (CO2 ) to high-valued hydrocarbons. In this study, oxygen vacancy-rich Bi2 O3 nanosheets coated with polypyrrole (Bi2 O3 @PPy NSs) are designed and synthesized, as precatalysts for selective electrocatalytic CO2 reduction to formate. Systematic material characterization demonstrated that Bi2 O3 @PPy precatalyst can evolve intoBi2 O2 CO3 @PPy nanosheets with rich oxygen vacancies (Bi2 O2 CO3 @PPy NSs) via electrolyte-mediated conversion and function as the real active catalyst for CO2 reduction reaction electrocatalysis. Coating catalyst with a PPy shell can modulate the interfacial microenvironment of active sites, which work in coordination with rich oxygen vacancies in Bi2 O2 CO3 and efficiently mediate directional selective CO2 reduction toward formate formation. With the fine-tuning of interfacial microenvironment, the optimized Bi2 O3 @PPy-2 NSs derived Bi2 O2 CO3 @PPy-2 NSs exhibit a maximum Faradaic efficiency of 95.8% at -0.8 V (versus. reversible hydrogen electrode) for formate production. This work might shed some light on designing advanced catalysts toward selective electrocatalytic CO2 reduction through local microenvironment engineering.

9.
Inorg Chem ; 62(35): 14477-14483, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37610771

RESUMO

The research on high-efficiency two-dimensional (2D) catalytic materials for the small-molecule oxidation-assisted hydrogen evolution reaction (HER) is prospective for efficient hydrogen production. Herein, we report heterostructured Pt/Rh metallene with Pt nanoparticles (NPs) uniformly anchored on Rh metallene for the HER and ethylene glycol oxidation reaction (EGOR). The ultrathin sheet structure of the Pt/Rh metallene offers high surface areas and sufficient active sites. More importantly, the Pt/Rh heterostructure can optimize catalytic active centers and adjust electronic structure. Thus, Pt/Rh metallene exhibits superior electrocatalytic HER activity with a low overpotential of 28 mV in 1 M KOH at 10 mA cm-2 and EGOR activity with a specific activity of 8.39 mA cm-2 in 1 M KOH with 3 M EG, along with outstanding CO tolerance. In a two-electrode system, Pt/Rh metallene requires a low potential of 0.51 V for stable and efficient hydrogen production at 10 mA cm-2 in 1 M KOH + 3 M EG, with the simultaneous production of high-value-added products. The job proposes an attractive strategy for the synthesis of 0D/2D metallene toward simultaneous energy-saving hydrogen production and chemical update.

10.
Inorg Chem ; 62(14): 5622-5629, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36964752

RESUMO

Engineering two-dimensional (2D) metallic nanomaterials has attracted numerous research interests for oxygen reduction reaction (ORR) due to their highly exposed unsaturated metal atoms and excellent physicochemical properties. Herein, we report a CO-confined growth strategy for the synthesis of 2D PdCu bimetallene with several atomic layers for ORR. The incorporation of Cu into Pd metallene can generate strain effect and change the electronic structure, weakening the interaction between Pd and CO and suppressing the adsorption of CO. Therefore, the synthesized PdCu bimetallene exhibits remarkable catalytic performance for alkaline ORR, with mass and specific activities of 0.82 A mgPd-1 and 1.01 mA cm-2, which are 5.1 and 3.7 times those for Pt/C, respectively. Meanwhile, the PdCu bimetallene shows no decrease in ORR activity after 5000 cycles. This work highlights the design of ultrathin bimetallic 2D nanomaterials for efficient ORR electrocatalysis.

11.
Nanotechnology ; 34(28)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37023728

RESUMO

Controlling the morphology and composition of Pd-based catalysts is the key to construct highly efficient electrocatalysts for cathodic oxygen reduction reaction (ORR). Here, rare Earth element Y-doped Pd nanosponge (PdY NSs) are prepared by one-step reduction approach using NaBH4as reductant, which are employed for ORR under 0.1 M KOH. The PdY NSs with plentiful voids can offer a large number of active sites and improve the mass transfer for ORR. Moreover, the introduction of Y alters the electronic structure of Pd, thus promoting the dissociation and adsorption of oxygen. Therefore, the prepared PdY NSs display superior ORR activity and durability to the Pd NSs and Pd black, highlighting the introduction of rare Earth element on the enhancement of ORR performance for Pd-based catalysts.

12.
Bioorg Chem ; 135: 106512, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37027948

RESUMO

Twenty new ent-kaurane diterpenoids, wardiisins A-T (1-20), along with two previously undescribed artefactual compounds (21 and 22) and twelve known analogues (23-34), were isolated from the aerial part of Isodon wardii. Their structures were elucidated by comprehensive analysis of spectroscopic data and single-crystal X-ray diffraction, and most of them were found to bear unusual C-12 oxygenation. Compounds 4, 7, 8, 19, 20, 21 exhibited remarkable cytotoxicity against the cancer cell lines HL-60, SMMC-7721, A-549, MDA-MB-231, and SW480, with IC50 values ranging from 0.3 to 5.2 µM. Moreover, 7 was found to induce G2/M cell cycle arrest and promote apoptosis in SW480 cell lines.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Diterpenos do Tipo Caurano , Diterpenos , Isodon , Humanos , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/química , Isodon/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Componentes Aéreos da Planta/química , Antineoplásicos/farmacologia , Antineoplásicos/análise , Estrutura Molecular
13.
Bioorg Chem ; 136: 106553, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119783

RESUMO

Five new cyclopiazonic acid related indole alkaloids, pegriseofamines A-E (1-5), were isolated from the fungus Penicillium griseofulvum. Their structures and absolute configurations were determined by NMR, HRESIMS, quantum-chemical calculation, and X-ray diffraction experiments. Among them, pegriseofamine A (1) possesses an undescribed 6/5/6/7 tetracyclic ring system generated by the fusion of an azepine and an indole unit via a cyclohexane, and the postulated biosynthetic origin of 1 was discussed. Compound 4 could relieve liver injury and prevent hepatocyte apoptosis in ConA-induced autoimmune liver disease.


Assuntos
Alcaloides Indólicos , Penicillium , Alcaloides Indólicos/química , Penicillium/química , Fungos , Estrutura Molecular
14.
Angew Chem Int Ed Engl ; 62(30): e202306553, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37227067

RESUMO

Replacing the oxygen evolution reaction (OER) with the thermodynamically favorable electrooxidation of organics is considered a promising approach for the simultaneous production of hydrogen (H2 ) and high-value chemicals. However, exploring and optimizing efficient electrocatalysts remains a challenge for large-scale production of value-added steroid carbonyl and H2 . Herein, Cr-NiO/GF and Cr-Ni3 N/GF (GF: graphite felt) electrocatalysts were designed as anode and cathode for the production of steroid carbonyls and H2 , respectively. The cooperative Cr-NiO and ACT (4-acetamido-2,2,6,6-tetramethyl-1-piperidine-N-oxyl) electrocatalyst can be extended to the electrooxidation of a series of steroid alcohols to the corresponding aldehydes. Additionally, Cr-Ni3 N displays superior electrocatalytic activity for hydrogen evolution reaction (HER), with a low overpotential of 35 mV to deliver 10 mA cm-2 . Furthermore, the system coupled with anodic electrooxidation of sterol and cathodic HER exhibited excellent performance with high space-time yield of 48.85 kg m-3 h-1 for steroid carbonyl and 1.82 L h-1 for H2 generation in a two-layer stacked flow cell. Density Functional Theory (DFT) calculations indicated that Cr doping effectively stabilizes ACTH on the NiO surface, and ACTH molecule could be captured via the ketonic oxygen interaction with Cr, resulting in excellent electrocatalytic activity. This work develops a novel approach to the rational design of efficient electrocatalysts for the simultaneous production of H2 and large-scale value-added pharmaceutical carbonyl intermediates.

15.
J Am Chem Soc ; 144(15): 6871-6881, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35410472

RESUMO

Elansolid A is a structurally complex polyketide macrolactone natural product that exhibits promising antibacterial properties. Its challenging asymmetric total synthesis was achieved by a convergent strategy, in which the tetrahydroindane core of the molecule and an eastern vinyl iodide moiety were combined as the main fragments. The central tetrahydroindane motif was constructed with high stereoselectivity by a bioinspired intramolecular Diels-Alder cycloaddition, generating four stereogenic centers in a single step. The stereocontrol of this key step could be achieved by virtue of a 1,3-allylic strain generated by the temporary introduction of a steric-directing iodine substituent on the substrate. The formation of the macrolactone motif that completes the synthesis was achieved via two different retrosynthetic disconnections, namely, a Suzuki-Miyaura cross-coupling or an alternative Mukaiyama esterification reaction.


Assuntos
Antibacterianos , Produtos Biológicos , Antibacterianos/química , Reação de Cicloadição , Macrolídeos/química , Estereoisomerismo
16.
Small ; 18(32): e2203020, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35843878

RESUMO

Tailoring the morphology and crystal structure of metallene is critical to improve its electrocatalytic performance. In this work, hetero-phase RhB metallene (h-RhB metallene) with amorphous/crystalline structure is readily prepared by a two-step method. The h-RhB metallene is very unique in its non-metallic heteroatom doping and amorphous/crystalline structure. Benefiting from the unique metallene structure and the optimized electronic states induced by the incorporation of B atoms, the h-RhB metallene exhibits superior performance for hydrogen evolution reaction and hydrogen peroxide electro-oxidation reaction (HPOR). When coupled with HPOR, the h-RhB metallene||h-RhB metallene water electrolysis two-electrode system exhibits a lower cell voltage of 0.379 V (@ 10 mA cm-2 ) compared with the overall water splitting (1.35 V). The presented synthetic method provides a powerful strategy to design metallene with hetero-phase for energy-saving H2 production.


Assuntos
Boro , Água , Eletrólise/métodos , Peróxido de Hidrogênio/química , Oxirredução , Água/química
17.
Nanotechnology ; 33(32)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35504246

RESUMO

The compositional and structural engineering of advanced nanomaterials for hydrogen evolution reaction (HER) is highly necessary for efficient hydrogen production. Herein, PdOs nanospine assemblies (PdOs NAs) with urchin-like structures are fabricated via one-step route using DM-970 and KBr as surfactant agent and capping agent, respectively. Benefiting from electronic effect and multi-branched structure, the PdOs NAs exhibit superior performance for HER in alkaline and neutral solutions, requiring overpotentials of 28 and 35 mV at -10 mA cm-2, respectively, as well as superior long-term stability. This study offers a universal approach for the fabrication of active Pd-based catalysts with multi-branched morphology for efficient water electrolysis and beyond.

18.
Nanotechnology ; 33(38)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35667346

RESUMO

Exploring cost-effective and highly active electrocatalysts is of great significance for sustainable electrochemical NH3synthesis. Palladium (Pd)-based catalysts have been unanimously considered as one of the most efficient catalysts for the nitrogen reduction reaction (NRR). Herein, self-supported mesoporous Pd film with partial oxidation on Ni foam (mPd-PdO/NF) was synthesized through the micelle-assisted chemical replacement method coupled with air oxidation under 260 °C, and the mPd-PdO/NF electrocatalyst exhibited superior NRR performance with the maximum values ofrNH3(24.8 mg h-1mgcat.-1) and FE (16.64%) were obtained at -0.1 V, relative to the single counterparts (mPd/NF and mPdO/NF). It is proposed that both metallic Pd and its oxide domains when co-existing with a phase boundary between them can facilitate nitrogen activation and hydrogenation, resulting in an enhanced NRR performance. This work provides an inspiring strategy for the rational design of highly active and durable metal-metal-oxide nanoarchitectonics for ammonia electrosynthesis.

19.
Nanotechnology ; 33(37)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35653927

RESUMO

Design of the structure, composition and interface of the catalysts is very important to improve oxygen reduction reaction (ORR) catalytic activity under alkaline environment. Herein, we propose a direct method to rapid synthesis of tannic acid (TA) modified PdAu alloy nanowires (PdAu@TA NWs). Compared with pure PdAu NWs and commercial Pt/C, the PdAu@TA NWs exhibit superior ORR electrocatalytic activity (mass activity: 0.73 A mg-1metaland specific activity: 3.50 mA cm-2), stability, and methanol tolerance in an alkaline medium because PdAu@TA NWs possess sufficient active sites and synergistic effect that can effectively promote the oxygen reduction, inhibit the oxidation of the catalyst and improve the methanol tolerance of the catalyst. This synthetic method is a promising strategy to prepare metallic catalyst with surface functionalization.

20.
Nanotechnology ; 33(45)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35878585

RESUMO

Nonmetal doping is a promising strategy to improve electrocatalytic performance of noble metal based catalysts for oxygen reduction reaction (ORR). Herein, we report a facile method to fabricate PdCuBP nanothorn assemblies (PdCuBP NTAs) by co-doping B and P into pre-synthesized PdCu NTAs using NaBH4and NaH2PO2as B source and P source, respectively. The metal-nonmetal structure and multi-branched morphology can optimize oxygen adsorption energy and avoid catalyst migration, agglomeration and Ostwald ripening. As such, the obtained PdCuBP NTAs exhibit efficient activity and excellent long-term stability for ORR. This research offers an excellent strategy for co-doping nonmetal elements into metal nanocrystals with controllable composition and structure to improve electrocatalytic ORR performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA