Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 48(4): 773-786.e5, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29625896

RESUMO

The molecular mechanisms whereby CD8+ T cells become "exhausted" in the tumor microenvironment remain unclear. Programmed death ligand-1 (PD-L1) is upregulated on tumor cells and PD-1-PD-L1 blockade has significant efficacy in human tumors; however, most patients do not respond, suggesting additional mechanisms underlying T cell exhaustion. B7 superfamily member 1 (B7S1), also called B7-H4, B7x, or VTCN1, negatively regulates T cell activation. Here we show increased B7S1 expression on myeloid cells from human hepatocellular carcinoma correlated with CD8+ T cell dysfunction. B7S1 inhibition suppressed development of murine tumors. Putative B7S1 receptor was co-expressed with PD-1 but not T cell immunoglobulin and mucin-domain containing-3 (Tim-3) at an activated state of early tumor-infiltrating CD8+ T cells, and B7S1 promoted T cell exhaustion, possibly through Eomes overexpression. Combinatorial blockade of B7S1 and PD-1 synergistically enhanced anti-tumor immune responses. Collectively, B7S1 initiates dysfunction of tumor-infiltrating CD8+ T cells and may be targeted for cancer immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética
2.
BMC Infect Dis ; 21(1): 620, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187390

RESUMO

BACKGROUND: Candida pelliculosa is an ecological fungal species that can cause infections in immunocompromised individuals. Numerous studies globally have shown that C. pelliculosa infects neonates. An outbreak recently occurred in our neonatal intensive care unit; therefore, we aimed to evaluate the risk factors in this hospital-acquired fungal infection. METHODS: We performed a case-control study, analysing the potential risk factors for neonatal infections of C. pelliculosa so that infection prevention and control could be implemented in our units. Isolated strains were tested for drug resistance and biofilm formation, important factors for fungal transmission that give rise to hospital-acquired infections. RESULTS: The use of three or more broad-spectrum antimicrobials or long hospital stays were associated with higher likelihoods of infection with C. pelliculosa. The fungus was not identified on the hands of healthcare workers or in the environment. All fungal isolates were susceptible to anti-fungal medications, and after anti-fungal treatment, all infected patients recovered. Strict infection prevention and control procedures efficiently suppressed infection transmission. Intact adhesin-encoding genes, shown by genome analysis, indicated possible routes for fungal transmission. CONCLUSIONS: The use of three or more broad-spectrum antimicrobials or a lengthy hospital stay is theoretically associated with the risk of infection with C. pelliculosa. Strains that we isolated are susceptible to anti-fungal medications, and these were eliminated by treating all patients with an antifungal. Transmission is likely via adhesion to the cell surface and biofilm formation.


Assuntos
Biofilmes , Candidíase/epidemiologia , Candidíase/prevenção & controle , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Surtos de Doenças/prevenção & controle , Equipamentos e Provisões/microbiologia , Unidades de Terapia Intensiva Neonatal , Saccharomycetales/genética , Antifúngicos/uso terapêutico , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Estudos de Casos e Controles , China/epidemiologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Feminino , Pessoal de Saúde , Humanos , Recém-Nascido , Controle de Infecções/métodos , Tempo de Internação , Masculino , Testes de Sensibilidade Microbiana , RNA Fúngico/genética , Fatores de Risco , Saccharomycetales/isolamento & purificação
3.
Int J Mol Sci ; 20(1)2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30621285

RESUMO

Copper is an essential trace element participating in many vital biological processes, however it becomes a toxic agent when in excess. Thus, precise and tight regulation of copper homeostasis processes, including transport, delivery, storage, detoxification, and efflux machineries, is important, ensuring that only the amount needed to sustain basic biological functions and simultaneously prevent copper toxicity in the cell is maintained. Numerous exciting studies have revealed that copper plays an indispensable role at the microbial pathogen-host axis for entities ranging from pathogenic bacteria to deadly fungal species. Analyses of copper homeostases in bacteria and fungi extensively demonstrate that copper is utilized by the host immune system as an anti-microbial agent. The expression of copper efflux and detoxification from microbial pathogens is induced to counteract the host's copper bombardment, which in turn disrupts these machineries, resulting in the attenuation of microbial survival in host tissue. We hereby review the latest work in copper homeostases in pathogenic bacteria and fungi and focus on the maintenance of a copper balance at the pathogen-host interaction axis.


Assuntos
Bactérias/metabolismo , Cobre/metabolismo , Fungos/metabolismo , Homeostase , Interações Hospedeiro-Patógeno , Fungos/patogenicidade , Imunidade
4.
Microbiol Spectr ; : e0003824, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912819

RESUMO

Cryptococcus neoformans is a life-threatening fungal pathogen that is a causative agent for pulmonary infection and meningoencephalitis in both immunocompetent and immunodeficient individuals. Recent studies have elucidated the important function of the target of rapamycin (TOR) signaling pathway in the modulation of C. neoformans virulence factor production and pathogenicity in animal infection models. Herein, we discovered that Ypk1, a critical component of the TOR signaling pathway, acts as a critical modulator in fungal pathogenicity through post-translational modifications (PTMs). Mass spectrometry analysis revealed that Ypk1 is subject to protein acetylation at lysines 315 and 502, and both sites are located within kinase functional domains. Inhibition of the C. neoformans TOR pathway by rapamycin activates the deacetylation process for Ypk1. The YPK1Q strain, a hyper-acetylation of Ypk1, exhibited increased sensitivity to rapamycin, decreased capsule formation ability, reduced starvation tolerance, and diminished fungal pathogenicity, indicating that deacetylation of Ypk1 is crucial for responding to stress. Deacetylase inhibition assays have shown that sirtuin family proteins are critical to the Ypk1 deacetylation mechanism. After screening deacetylase mutants, we found that Dac1 and Dac7 directly interact with Ypk1 to facilitate the deacetylation modification process via a protein-protein interaction. These findings provide new insights into the molecular basis for regulating the TORC-Ypk1 axis and demonstrate an important function of protein acetylation in modulating fungal pathogenicity. IMPORTANCE: Cryptococcus neoformans is an important opportunistic fungal pathogen in humans. While there are currently few effective antifungal treatments, the absence of novel molecular targets in fungal pathogenicity hinders the development of new drugs. There is increasing evidence that protein post-translational modifications (PTMs) can modulate the pathogenicity of fungi. In this study, we discovered that the pathogenicity of C. neoformans was significantly impacted by the dynamic acetylation changes of Ypk1, the immediate downstream target of the TOR complex. We discovered that Ypk1 is acetylated at lysines 315 and 502, both of which are within kinase functional domains. Deacetylation of Ypk1 is necessary for formation of the capsule structure, the response to the TOR pathway inhibitor rapamycin, nutrient utilization, and host infection. We also demonstrate that the sirtuin protein family is involved in the Ypk1 deacetylation mechanism. We anticipate that the sirtuin-Ypk1 regulation axis could be used as a potential target for the development of antifungal medications.

5.
Elife ; 132024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251723

RESUMO

Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for in vivo and in vitro multidrug resistance in C. neoformans. Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1K97 coordinates with its ubiquitination processes at Isw1K113 and Isw1K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas de Saccharomyces cerevisiae , Humanos , Cromatina , Cryptococcus neoformans/genética , Saccharomyces cerevisiae/genética , Acetilação , Comportamento Imitativo , Adenosina Trifosfatases/metabolismo , Ubiquitinação , Resistência a Múltiplos Medicamentos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Biomed Opt Express ; 14(6): 3072-3085, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342689

RESUMO

It is now understood that genes and their various mutations are associated with the onset and progression of diseases. However, routine genetic testing techniques are limited by their high cost, time consumption, susceptibility to contamination, complex operation, and data analysis difficulties, rendering them unsuitable for genotype screening in many cases. Therefore, there is an urgent need to develop a rapid, sensitive, user-friendly, and cost-effective method for genotype screening and analysis. In this study, we propose and investigate a Raman spectroscopic method for achieving fast and label-free genotype screening. The method was validated using spontaneous Raman measurements of wild-type Cryptococcus neoformans and its six mutants. An accurate identification of different genotypes was achieved by employing a one-dimensional convolutional neural network (1D-CNN), and significant correlations between metabolic changes and genotypic variations were revealed. Genotype-specific regions of interest were also localized and visualized using a gradient-weighted class activation mapping (Grad-CAM)-based spectral interpretable analysis method. Furthermore, the contribution of each metabolite to the final genotypic decision-making was quantified. The proposed Raman spectroscopic method demonstrated huge potential for fast and label-free genotype screening and analysis of conditioned pathogens.

7.
ACS Nano ; 17(14): 13296-13309, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37399243

RESUMO

Skin infections are major threats to human health, causing ∼500 incidences per 10 000 person-year. In patients with diabetes mellitus, particularly, skin infections are often accompanied by a slow healing process, amputation, and even death. Timely diagnosis of skin infection strains and on-site therapy are vital in human health and safety. Herein, a double-layered "test-to-treat" pad is developed for the visual monitoring and selective treatment of drug-sensitive (DS)/drug-resistant (DR) bacterial infections. The inner layer (using carrageenan hydrogel as a scaffold) is loaded with bacteria indicators and an acid-responsive drug (Fe-carbenicillin frameworks) for infection detection and DS bacteria inactivation. The outer layer is a mechanoluminescence material (ML, CaZnOS:Mn2+) and visible-light responsive photocatalyst (Pt@TiO2) incorporated elastic polydimethylsiloxane (PDMS). On the basis of the colorimetric sensing result (yellow for DS-bacterial infection and red for DR-bacterial infection), a suitable antibacterial strategy is guided and then performed. Two available bactericidal routes provided by double pad layers reflect the advantage. The controllable and effective killing of DR bacteria is realized by in situ generated reactive oxygen species (ROSs) from the combination of Pt@TiO2 and ML under mechanical force, avoiding physical light sources and alleviating off-target side effects of ROS in biomedical therapy. As a proof-of-concept, the "test-to-treat" pad is applied as a wearable wound dressing for sensing and selectively dealing with DS/DR bacterial infections in vitro and in vivo. This multifunctional design effectively reduces antibiotic abuse and accelerates wound healing, providing an innovative and promising Band-Aid strategy in point-of-care diagnosis and therapy.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Infecção dos Ferimentos , Humanos , Titânio , Antibacterianos/farmacologia , Bactérias , Hidrogéis
8.
Nat Commun ; 14(1): 7202, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938547

RESUMO

Microglia provide protection against a range of brain infections including bacteria, viruses and parasites, but how these glial cells respond to fungal brain infections is poorly understood. We investigated the role of microglia in the context of cryptococcal meningitis, the most common cause of fungal meningitis in humans. Using a series of transgenic- and chemical-based microglia depletion methods we found that, contrary to their protective role during other infections, loss of microglia did not affect control of Cryptococcus neoformans brain infection which was replicated with several fungal strains. At early time points post-infection, we found that microglia depletion lowered fungal brain burdens, which was related to intracellular residence of C. neoformans within microglia. Further examination of extracellular and intracellular fungal populations revealed that C. neoformans residing in microglia were protected from copper starvation, whereas extracellular yeast upregulated copper transporter CTR4. However, the degree of copper starvation did not equate to fungal survival or abundance of metals within different intracellular niches. Taken together, these data show how tissue-resident myeloid cells may influence fungal phenotype in the brain but do not provide protection against this infection, and instead may act as an early infection reservoir.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Humanos , Meningite Criptocócica/prevenção & controle , Microglia , Cobre , Neuroglia
9.
Emerg Microbes Infect ; 11(1): 1572-1585, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35621025

RESUMO

Cryptococcal meningoencephalitis (CM) is emerging as an infection in HIV/AIDS patients shifted from primarily ART-naive to ART-experienced individuals, as well as patients with COVID-19 and immunocompetent hosts. This fungal infection is mainly caused by the opportunistic human pathogen Cryptococcus neoformans. Brain or central nervous system (CNS) dissemination is the deadliest process for this disease; however, mechanisms underlying this process have yet to be elucidated. Moreover, illustrations of clinically relevant responses in cryptococcosis are currently limited due to the low availability of clinical samples. In this study, to explore the clinically relevant responses during C. neoformans infection, macaque and mouse infection models were employed and miRNA-mRNA transcriptomes were performed and combined, which revealed cytoskeleton, a major feature of HIV/AIDS patients, was a centric pathway regulated in both infection models. Notably, assays of clinical immune cells confirmed an enhanced macrophage "Trojan Horse" in patients with HIV/AIDS, which could be shut down by cytoskeleton inhibitors. Furthermore, myocilin, encoded by MYOC, was found to be a novel enhancer for the macrophage "Trojan Horse," and an enhanced fungal burden was achieved in the brains of MYOC-transgenic mice. Taken together, the findings from this study reveal fundamental roles of the cytoskeleton and MYOC in fungal CNS dissemination, which not only helps to understand the high prevalence of CM in HIV/AIDS but also facilitates the development of novel therapeutics for meningoencephalitis caused by C. neoformans and other pathogenic microorganisms.


Assuntos
COVID-19 , Criptococose , Cryptococcus neoformans , Infecções por HIV , Meningoencefalite , MicroRNAs , Animais , Encéfalo/patologia , Criptococose/microbiologia , Cryptococcus neoformans/genética , Modelos Animais de Doenças , Humanos , Macaca , Meningoencefalite/microbiologia , Camundongos , MicroRNAs/genética , Transcriptoma
10.
Nat Commun ; 13(1): 5407, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109512

RESUMO

Mitochondrial quality control prevents accumulation of intramitochondrial-derived reactive oxygen species (mtROS), thereby protecting cells against DNA damage, genome instability, and programmed cell death. However, underlying mechanisms are incompletely understood, particularly in fungal species. Here, we show that Cryptococcus neoformans heat shock factor 3 (CnHsf3) exhibits an atypical function in regulating mtROS independent of the unfolded protein response. CnHsf3 acts in nuclei and mitochondria, and nuclear- and mitochondrial-targeting signals are required for its organelle-specific functions. It represses the expression of genes involved in the tricarboxylic acid cycle while promoting expression of genes involved in electron transfer chain. In addition, CnHsf3 responds to multiple intramitochondrial stresses; this response is mediated by oxidation of the cysteine residue on its DNA binding domain, which enhances DNA binding. Our results reveal a function of HSF proteins in regulating mtROS homeostasis that is independent of the unfolded protein response.


Assuntos
Cryptococcus neoformans , Cisteína , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Cisteína/metabolismo , DNA/metabolismo , Homeostase , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Front Cell Infect Microbiol ; 11: 774340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926320

RESUMO

Prevalence of fungal diseases has increased globally in recent years, which often associated with increased immunocompromised patients, aging populations, and the novel Coronavirus pandemic. Furthermore, due to the limitation of available antifungal agents mortality and morbidity rates of invasion fungal disease remain stubbornly high, and the emergence of multidrug-resistant fungi exacerbates the problem. Fungal pathogenicity and interactions between fungi and host have been the focus of many studies, as a result, lots of pathogenic mechanisms and fungal virulence factors have been identified. Mass spectrometry (MS)-based proteomics is a novel approach to better understand fungal pathogenicities and host-pathogen interactions at protein and protein posttranslational modification (PTM) levels. The approach has successfully elucidated interactions between pathogens and hosts by examining, for example, samples of fungal cells under different conditions, body fluids from infected patients, and exosomes. Many studies conclude that protein and PTM levels in both pathogens and hosts play important roles in progression of fungal diseases. This review summarizes mass spectrometry studies of protein and PTM levels from perspectives of both pathogens and hosts and provides an integrative conceptual outlook on fungal pathogenesis, antifungal agents development, and host-pathogen interactions.


Assuntos
Interações Hospedeiro-Patógeno , Micoses , Processamento de Proteína Pós-Traducional , Humanos , Espectrometria de Massas , Proteoma/metabolismo
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 260: 119978, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34077861

RESUMO

Cryptococcus neoformans (C. neoformans) is a causative agent for acute pulmonary infection, which can further develop to lethal meningoencephalitis if untreated. The meningoencephalitis infection can be prevented, if timely treatment on pulmonary cryptococcal infection can be implemented based on its early diagnosis and accurate assessment. In this study, blood serum surface-enhanced Raman spectroscopy (SERS) method was investigated on identification and assessment of pulmonary C. neoformans infection. The serum SERS measurements were collected from the mice infected with C. neoformans and the healthy mice, in which the infected mice were further divided into four subgroups according to the duration of infection. Based on those SRES measurements, biochemical differences were analyzed among those different groups to investigate the potential biomarkers for identifying and assessing the pulmonary C. neoformans infection. Furthermore, partial least square (PLS) analysis followed by linear discriminant analysis (LDA) model was employed to identify pulmonary cryptococcal infection and to assess the degrees of infection with the accuracies of 96.7% and 85.3%, respectively. Therefore, our study has demonstrated the great clinical potential of using serum SERS technique for an accurate identification and assessment of pulmonary cryptococcal infection.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Criptococose/diagnóstico , Pulmão , Camundongos , Soro , Análise Espectral Raman
13.
Front Cell Infect Microbiol ; 11: 662404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485169

RESUMO

Cryptococcus neoformans is an invasive human fungal pathogen that causes more than 181,000 deaths each year. Studies have demonstrated that pulmonary C. neoformans infection induces innate immune responses involving copper, and copper detoxification in C. neoformans improves its fitness and pathogenicity during pulmonary C. neoformans infection. However, the molecular mechanism by which copper inhibits C. neoformans proliferation is unclear. We used a metallothionein double-knockout C. neoformans mutant that was highly sensitive to copper to demonstrate that exogenous copper ions inhibit fungal cell growth by inducing reactive oxygen species generation. Using liquid chromatography-tandem mass spectrometry, we found that copper down-regulated factors involved in protein translation, but up-regulated proteins involved in ubiquitin-mediated protein degradation. We propose that the down-regulation of protein synthesis and the up-regulation of protein degradation are the main effects of copper toxicity. The ubiquitin modification of total protein and proteasome activity were promoted under copper stress, and inhibition of the proteasome pathway alleviated copper toxicity. Our proteomic analysis sheds new light on the antifungal mechanisms of copper.


Assuntos
Criptococose , Cryptococcus neoformans , Cobre/toxicidade , Humanos , Proteômica , Virulência
14.
Front Microbiol ; 11: 575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362878

RESUMO

Cryptococcus neoformans is a causative agent for pulmonary infection and meningoencephalitis. Understanding the host's response to C. neoformans infection is critical for developing effective treatment. Even though some have elucidated the host response at the transcriptome level, little is known about how it modulates its defense machinery through the proteome mechanism or how protein posttranslational modification responds to the infection. In this work, we employed a murine infection model and mass spectrometry to systematically determine the proteome and acetylome statuses of lungs and brains in the early stage of infection. To extensively analyze the host response, we integrated the proteome data to the transcriptome results. Critical genes, including genes involved in phagosome, lysosome, and platelet activation are significantly altered in protein and gene expression during infection. In the acetylome analysis, we demonstrated that lung and brain tissues differentially regulate protein acetylation during infection. The three primary groups of proteins altered in acetylation status are histones, proteins involved in glucose and fatty acid metabolism, and proteins from the immune system. These analyses provide an integrative regulation network of the host responding to C. neoformans and shed new light on understanding the host's regulation mechanism when responding to C. neoformans.

15.
PLoS Negl Trop Dis ; 13(7): e0007566, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329596

RESUMO

Pathogens and hosts require rapid modulation of virulence and defense mechanisms at the infection axis, but monitoring such modulations is challenging. In studying the human fungal pathogen Cryptococcus neoformans, mouse and rabbit infection models are often employed to shed light on the disease mechanisms but that may not be clinically relevant. In this study, we developed an animal infection model using the non-human primate cynomolgus monkey Macaca fascicularis. In addition, we systematically profiled and compared transcriptional responses between the infected mice and the cynomolgus monkey, using simultaneous or dual RNA next-generation sequencing. We demonstrated that there are shared but distinct transcriptional profiles between the two models following C. neoformans infection. Specifically, genes involved in immune and inflammatory responses are all upregulated. Osteoclastogenesis and insulin signaling are also significantly co-regulated in both models and disrupting an osteoclastogenesis-associated gene (OC-STAMP) or the insulin-signaling process significantly altered the host tolerance to C. neoformans. Moreover, C. neoformans was shown to activate metal sequestration, dampen the sugar metabolism, and control cell morphology during infection. Taking together, we described the development of a non-human primate model of cryptococcosis that allowed us to perform an in-depth analysis and comparison of transcriptome profiles during infections of two animal models and conceptually identify host genes important in disease responses. This study provides new insights in understanding fungal pathogenesis mechanisms that potentially facilitate the identification of novel drug targets for the treatment of cryptococcal infection.


Assuntos
Criptococose/genética , Cryptococcus neoformans , Perfilação da Expressão Gênica , Pneumopatias Fúngicas/genética , Animais , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Insulina/metabolismo , Pneumopatias Fúngicas/imunologia , Pneumopatias Fúngicas/microbiologia , Macaca fascicularis , Masculino , Proteínas de Membrana/metabolismo , Metais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Análise de Sequência de RNA , Transdução de Sinais , Virulência/genética
16.
Commun Biol ; 2: 154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069264

RESUMO

Lysine acetylation is critical in regulating important biological processes in many organisms, yet little is known about acetylome evolution and its contribution to phenotypic diversity. Here, we compare the acetylomes of baker's yeast and the three deadliest human fungal pathogens, Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus. Using mass spectrometry enriched for acetylated peptides together with public data from Saccharomyces cerevisiae, we show that fungal acetylomes are characterized by dramatic evolutionary dynamics and limited conservation in core biological processes. Notably, the levels of protein acetylation in pathogenic fungi correlate with their pathogenicity. Using gene knockouts and pathogenicity assays in mice, we identify deacetylases with critical roles in virulence and protein translation elongation. Finally, through mutational analysis of deactylation motifs we find evidence of positive selection at specific acetylation motifs in fungal pathogens. These results shed new light on the pathogenicity regulation mechanisms underlying the evolution of fungal acetylomes.


Assuntos
Amidoidrolases/genética , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/genética , Processamento de Proteína Pós-Traducional , Acetilação , Amidoidrolases/metabolismo , Animais , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , Candida albicans/genética , Candida albicans/metabolismo , Candida albicans/patogenicidade , Criptococose/mortalidade , Criptococose/patologia , Cryptococcus neoformans/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Elongação Traducional da Cadeia Peptídica , Peptídeos/genética , Peptídeos/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sobrevida , Virulência
17.
Cell Death Dis ; 9(2): 200, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422670

RESUMO

Chromatin conformation plays a key role in regulating gene expression and controlling cell differentiation. However, the whole-genome chromatin conformation changes that occur during leukemia cell differentiation are poorly understood. Here, we characterized the changes in chromatin conformation, histone states, chromatin accessibility, and gene expression using an all-trans retinoic acid (ATRA)-induced HL-60 cell differentiation model. The results showed that the boundaries of topological associated domains (TADs) were stable during differentiation; however, the chromatin conformations within several specific TADs were obviously changed. By combining H3K4me3, H3K27ac, and Hi-C signals, we annotated the differential gene-regulatory chromatin interactions upon ATRA induction. The gains and losses of the gene-regulatory chromatin interactions are significantly correlated with gene expression and chromatin accessibility. Finally, we found that the loss of GATA2 expression and DNA binding are crucial for the differentiation process, and changes in the chromatin structure around the GATA2 regulate its expression upon ATRA induction. This study provided both statistical insights and experimental details regarding the relationship between chromatin conformation changes and transcription regulation during leukemia cell differentiation, and the results suggested that the chromatin conformation is a new type of potential drug target for cancer therapy.


Assuntos
Cromatina/metabolismo , Leucemia/patologia , Tretinoína/farmacologia , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Cromatina/genética , Fator de Transcrição GATA2/biossíntese , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia/genética , Leucemia/metabolismo , Conformação Molecular/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
18.
Microbiologyopen ; 7(3): e00564, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29243387

RESUMO

Cryptococcus neoformans is an important opportunistic fungal pathogen in humans. Recent studies have demonstrated that metals are critical factors for the regulation of fungal virulence in hosts. In this study, we systemically investigated the function of C. neoformans magnesium transporters in controlling the intracellular Mg balance and virulence-associated factors. We identified three Mg transporters in C. neoformans: Mgt1, Mgt2, and Mgt3. While we could not detect a Mg2+ -related growth phenotype in mgt1 and mgt3 knockout strains, a GAL7p-Mgt2 strain showed significant Mg-dependent growth defects in the presence of glucose. Further analysis demonstrated that MGT2 is a homolog of MNR2 in Saccharomyces cerevisiae, which is localized to the vacuolar membrane and participates in intracellular Mg transport. Interestingly, a transcriptome analysis showed that Mgt2 influenced the expression of 19 genes, which were independent of Mg2+ . We showed that melanin synthesis in C. neoformans required Mg2+ and Mgt2, and that capsule production was negatively regulated by Mg2+ and Mgt2. Repressing the expression of MGT2-induced capsule, which resulted in an increased fungal burden in the lungs. Cumulatively, this study sets the stage for further evaluation of the important role of Mg homeostasis in the regulation of melanin and capsule in C. neoformans.


Assuntos
Cryptococcus neoformans/enzimologia , Regulação Fúngica da Expressão Gênica , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Vacúolos/enzimologia , Vacúolos/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Transporte de Cátions/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência , Vacúolos/genética , Fatores de Virulência/genética
19.
Nat Commun ; 8(1): 1622, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158486

RESUMO

In human cells, DNA is hierarchically organized and assembled with histones and DNA-binding proteins in three dimensions. Chromatin interactions play important roles in genome architecture and gene regulation, including robustness in the developmental stages and flexibility during the cell cycle. Here we propose in situ Hi-C method named Bridge Linker-Hi-C (BL-Hi-C) for capturing structural and regulatory chromatin interactions by restriction enzyme targeting and two-step proximity ligation. This method improves the sensitivity and specificity of active chromatin loop detection and can reveal the regulatory enhancer-promoter architecture better than conventional methods at a lower sequencing depth and with a simpler protocol. We demonstrate its utility with two well-studied developmental loci: the beta-globin and HOXC cluster regions.


Assuntos
Cromatina/química , Cromatina/metabolismo , Ensaios de Triagem em Larga Escala/tendências , Linhagem Celular Tumoral , Cromatina/genética , Cromossomos/química , Cromossomos/genética , DNA/genética , DNA/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA