Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Sci Technol ; 53(9): 4912-4921, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30969774

RESUMO

Granular sludge is an efficient and compact biofilm process for wastewater treatment. However, the ecological factors involved in microbial community assembly during the granular biofilm formation are poorly understood, and little is known about the reproducibility of the process. Here, three replicate bioreactors were used to investigate microbial succession during the formation of granular biofilms. We identified three successional phases. During the initial phase, the successional turnover was high and α-diversity decreased as a result of the selection of taxa adapted to grow on acetate and form aggregates. Despite these dynamic changes, the microbial communities in the replicate reactors were similar. The second successional phase occurred when the settling time was rapidly decreased to selectively retain granules in the reactors. The influence of stochasticity on succession increased and new niches were created as granules emerged, resulting in temporarily increased α-diversity. The third successional phase occurred when the settling time was kept stable and granules dominated the biomass. Turnover was low, and selection resulted in the same abundant taxa in the reactors, but drift, which mostly affected low-abundant community members, caused the community in one reactor to diverge from the other two. Even so, performance was stable and similar between reactors.


Assuntos
Reatores Biológicos , Esgotos , Biofilmes , Reprodutibilidade dos Testes , Processos Estocásticos , Eliminação de Resíduos Líquidos
2.
Crit Rev Biotechnol ; 38(6): 801-816, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29400086

RESUMO

Environmental deterioration together with the need for water reuse and the increasingly restrictive legislation of water quality standards have led to a demand for compact, efficient and less energy consuming technologies for wastewater treatment. Aerobic granular sludge and membrane bioreactors (MBRs) are two technologies with several advantages, such as small footprint, high-microbial density and activity, ability to operate at high organic- and nitrogen-loading rates, and tolerance to toxicity. However, they also have some disadvantages. The aerobic granular sludge process generally requires post-treatment in order to fulfill effluent standards and MBRs suffer from fouling of the membranes. Integrating the two technologies could be a way of combining the advantages and addressing the main problems associated with both processes. The use of membranes to separate the aerobic granules from the treated water would ensure high-quality effluents suitable for reuse. Moreover, the use of granular sludge in MBRs has been shown to reduce fouling. Several recent studies have shown that the aerobic granular membrane bioreactor (AGMBR) is a promising hybrid process with many attractive features. However, major challenges that have to be addressed include how to achieve granulation and maintain granular stability during continuous operation of reactors. This paper aims to review the current state of research on AGMBR technology while drawing attention to relevant findings and highlight current limitations.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Incrustação Biológica , Membranas Artificiais , Esgotos
3.
Appl Microbiol Biotechnol ; 102(12): 5005-5020, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29705957

RESUMO

Granular activated sludge has gained increasing interest due to its potential in treating wastewater in a compact and efficient way. It is well-established that activated sludge can form granules under certain environmental conditions such as batch-wise operation with feast-famine feeding, high hydrodynamic shear forces, and short settling time which select for dense microbial aggregates. Aerobic granules with stable structure and functionality have been obtained with a range of different wastewaters seeded with different sources of sludge at different operational conditions, but the microbial communities developed differed substantially. In spite of this, granule instability occurs. In this review, the available literature on the mechanisms involved in granulation and how it affects the effluent quality is assessed with special attention given to the microbial interactions involved. To be able to optimize the process further, more knowledge is needed regarding the influence of microbial communities and their metabolism on granule stability and functionality. Studies performed at conditions similar to full-scale such as fluctuation in organic loading rate, hydrodynamic conditions, temperature, incoming particles, and feed water microorganisms need further investigations.


Assuntos
Esgotos/química , Purificação da Água/métodos , Aerobiose , Reatores Biológicos , Temperatura , Eliminação de Resíduos Líquidos , Microbiologia da Água
4.
Biofouling ; 31(1): 71-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25588128

RESUMO

The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems.


Assuntos
Biofilmes , Incrustação Biológica , Reatores Biológicos/microbiologia , Leveduras/isolamento & purificação , Euplotes , Paramecium , Filogenia , Polietileno , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia
5.
mSystems ; : e0053824, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934645

RESUMO

Hypersaline ecosystems display taxonomically similar assemblages with low diversities and highly dense accompanying viromes. The ecological implications of viral infection on natural microbial populations remain poorly understood, especially at finer scales of diversity. Here, we sought to investigate the influence of changes in environmental physicochemical conditions and viral predation pressure by autochthonous and allochthonous viruses on host dynamics. For this purpose, we transplanted two microbiomes coming from distant hypersaline systems (solar salterns of Es Trenc in Spain and the thalassohaline lake of Aran-Bidgol lake in Iran), by exchanging the cellular fractions with the sterile-filtered accompanying brines with and without the free extracellular virus fraction. The midterm exposure (1 month) of the microbiomes to the new conditions showed that at the supraspecific taxonomic range, the assemblies from the solar saltern brine more strongly resisted the environmental changes and viral predation than that of the lake. The metagenome-assembled genomes (MAGs) analysis revealed an intraspecific transition at the ecotype level, mainly driven by changes in viral predation pressure, by both autochthonous and allochthonous viruses. IMPORTANCE: Viruses greatly influence succession and diversification of their hosts, yet the effects of viral infection on the ecological dynamics of natural microbial populations remain poorly understood, especially at finer scales of diversity. By manipulating the viral predation pressure by autochthonous and allochthonous viruses, we uncovered potential phage-host interaction, and their important role in structuring the prokaryote community at an ecotype level.

6.
Biofilm ; 6: 100145, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37575957

RESUMO

Granular sludge is a biofilm process used for wastewater treatment which is currently being implemented worldwide. It is important to understand how disturbances affect the microbial community and performance of reactors. Here, two acetate-fed replicate reactors were inoculated with acclimatized sludge and the reactor performance, and the granular sludge microbial community succession were studied for 149 days. During this time, the microbial community was challenged by periodically removing half of the reactor biomass, subsequently increasing the food-to-microorganism (F/M) ratio. Diversity analysis together with null models show that overall, the microbial communities were resistant to the disturbances, observing some minor effects on polyphosphate-accumulating and denitrifying microbial communities and their associated reactor functions. Community turnover was driven by drift and random granule loss, and stochasticity was the governing ecological process for community assembly. These results evidence the aerobic granular sludge process as a robust system for wastewater treatment.

7.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37989854

RESUMO

Sediments underlying the solar salterns of S'Avall are anoxic hypersaline ecosystems dominated by anaerobic prokaryotes, and with the especial relevance of putative methanogenic archaea. Slurries from salt-saturated sediments, diluted in a gradient of salinity and incubated for > 4 years revealed that salt concentration was the major selection force that deterministically structured microbial communities. The dominant archaea in the original communities showed a decrease in alpha diversity with dilution accompanied by the increase of bacterial alpha diversity, being highest at 5% salts. Correspondingly, methanogens decreased and in turn sulfate reducers increased with decreasing salt concentrations. Methanogens especially dominated at 25%. Different concentrations of litter of Posidonia oceanica seagrass added as a carbon substrate, did not promote any clear relevant effect. However, the addition of ampicillin as selection pressure exerted important effects on the assemblage probably due to the removal of competitors or enhancers. The amended antibiotic enhanced methanogenesis in the concentrations ≤ 15% of salts, whereas it was depleted at salinities ≥ 20% revealing key roles of ampicillin-sensitive bacteria.


Assuntos
Euryarchaeota , Microbiota , Sais , Archaea/genética , Bactérias/genética , Euryarchaeota/genética , Ampicilina , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , Filogenia , Metano
8.
J Environ Monit ; 14(5): 1444-52, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22481149

RESUMO

The quality of the sludge in Wastewater Treatment Plants (WWTPs) depends on the suitable colonization of the flocs by microorganisms. Due to the functional importance of these biological constituents, several biological or biological-related parameters have been commonly used for the control of depuration efficiency. According to national and international water regulation recommendations, interlaboratory studies have a great relevance to determine which parameters are more reliable for their extensive application in routine control. However, these studies are also very useful to demonstrate consistency in results from multiple laboratories and to develop reliable and reproducible methodologies which might be necessary for protocol validation and also for accreditation issues to meet regulatory environmental requirements. The main purpose of this work was to assess the results obtained in consecutive interlaboratory assays in order to determine the concordance degree in the application of biological parameters by participating laboratories. Following the international recommendations about these studies, a common working protocol was proposed. Statistical tests indicated that Sludge Index and several routine physical-chemical analyses [V30, Mixed Liquor Suspended Solids (MLSS), Mixed Liquor Volatile Solids (MLVS) and Sludge Volumetric Index (SVI)] show low variability and therefore are suitable tools for laboratory control. Shannon Index and Sludge Biotic Index also presented low variability although a more precise protocol would be necessary, in particular the methodology to count small flagellates. The abundance and identification of protist species showed low concordance among laboratories and three factors were responsible for the low reliability of data: population density, size and morphological distinguishable characters of the specimens.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Amoeba/classificação , Amoeba/crescimento & desenvolvimento , Biodegradação Ambiental , Cilióforos/classificação , Cilióforos/crescimento & desenvolvimento , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/normas
9.
Syst Appl Microbiol ; 44(5): 126231, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34332366

RESUMO

The anaerobic hypersaline sediments of an ephemeral pond from the S'Avall solar salterns constituted an excellent study system because of their easy accessibility, as well as the analogy of their microbial assemblages with some known deep-sea hypersaline anaerobic brines. By means of shotgun metagenomics and 16S rRNA gene amplicon sequencing, the microbial composition of the sediment was shown to be stable in time and space. The communities were formed by prokaryote representatives with a clear inferred anaerobic metabolism, mainly related to the methane, sulfur and nitrate cycles. The most conspicuous finding was the inverted nature of the vertical stratification. Contrarily to what could be expected, a methanogenic archaeal metabolism was found to dominate in the upper layers, whereas Bacteria with fermentative and anaerobic respiration metabolisms increased with depth. We could demonstrate the methanogenic nature of the members of candidate lineages DHVE2 and MSBL1, which were present in high abundance in this system, and described, for the first time, viruses infecting these lineages. Members of the putatively active aerobic genera Salinibacter and Halorubrum were detected especially in the deepest layers for which we hypothesize that either oxygen could be sporadically available, or they could perform anaerobic metabolisms. We also report a novel repertoire of virus species thriving in these sediments, which had special relevance because of their lysogenic lifestyles.


Assuntos
Archaea , Bactérias , Microbiota , Salinidade , Anaerobiose , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Sedimentos Geológicos , Metano , Filogenia , RNA Ribossômico 16S/genética , Análise Espaço-Temporal
10.
Microbiome ; 8(1): 132, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917275

RESUMO

BACKGROUND: High-throughput amplicon sequencing of marker genes, such as the 16S rRNA gene in Bacteria and Archaea, provides a wealth of information about the composition of microbial communities. To quantify differences between samples and draw conclusions about factors affecting community assembly, dissimilarity indices are typically used. However, results are subject to several biases, and data interpretation can be challenging. The Jaccard and Bray-Curtis indices, which are often used to quantify taxonomic dissimilarity, are not necessarily the most logical choices. Instead, we argue that Hill-based indices, which make it possible to systematically investigate the impact of relative abundance on dissimilarity, should be used for robust analysis of data. In combination with a null model, mechanisms of microbial community assembly can be analyzed. Here, we also introduce a new software, qdiv, which enables rapid calculations of Hill-based dissimilarity indices in combination with null models. RESULTS: Using amplicon sequencing data from two experimental systems, aerobic granular sludge (AGS) reactors and microbial fuel cells (MFC), we show that the choice of dissimilarity index can have considerable impact on results and conclusions. High dissimilarity between replicates because of random sampling effects make incidence-based indices less suited for identifying differences between groups of samples. Determining a consensus table based on count tables generated with different bioinformatic pipelines reduced the number of low-abundant, potentially spurious amplicon sequence variants (ASVs) in the data sets, which led to lower dissimilarity between replicates. Analysis with a combination of Hill-based indices and a null model allowed us to show that different ecological mechanisms acted on different fractions of the microbial communities in the experimental systems. CONCLUSIONS: Hill-based indices provide a rational framework for analysis of dissimilarity between microbial community samples. In combination with a null model, the effects of deterministic and stochastic community assembly factors on taxa of different relative abundances can be systematically investigated. Calculations of Hill-based dissimilarity indices in combination with a null model can be done in qdiv, which is freely available as a Python package ( https://github.com/omvatten/qdiv ). In qdiv, a consensus table can also be determined from several count tables generated with different bioinformatic pipelines. Video Abstract.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Simulação por Computador , Microbiota , Software
11.
Microbiome ; 8(1): 148, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115538

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

12.
AMB Express ; 7(1): 168, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28871435

RESUMO

Granulation of activated sludge is an increasingly important area within the field of wastewater treatment. Granulation is usually achieved by high hydraulic selection pressure, which results in the wash-out of slow settling particles. The effect of the harsh wash-out conditions on the granular sludge ecosystem is not yet fully understood, but different bacterial groups may be affected to varying degrees. In this study, we used high-throughput amplicon sequencing to follow the community composition in granular sludge reactors for 12 weeks, both in the granular phase and the suspended phase (effluent). The microbiome of the washed out biomass was similar but not identical to the microbiome of the granular biomass. Certain taxa (e.g. Flavobacterium spp. and Bdellovibrio spp.) had significantly (p < 0.05) higher relative abundance in the granules compared to the effluent. Fluorescence in situ hybridization images indicated that these taxa were mainly located in the interior of granules and therefore protected from erosion. Other taxa (e.g. Meganema sp. and Zooglea sp.) had significantly lower relative abundance in the granules compared to the effluent, and appeared to be mainly located on the surface of granules and therefore subject to erosion. Despite being washed out, these taxa were among the most abundant members of the granular sludge communities and were likely growing fast in the reactors. The ratio between relative abundance in the granular biomass and in the effluent did not predict temporal variation of the taxa in the reactors, but it did appear to predict the spatial location of the taxa in the granules.

13.
Front Microbiol ; 8: 770, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507540

RESUMO

The granular sludge process is an effective, low-footprint alternative to conventional activated sludge wastewater treatment. The architecture of the microbial granules allows the co-existence of different functional groups, e.g., nitrifying and denitrifying communities, which permits compact reactor design. However, little is known about the factors influencing community assembly in granular sludge, such as the effects of reactor operation strategies and influent wastewater composition. Here, we analyze the development of the microbiomes in parallel laboratory-scale anoxic/aerobic granular sludge reactors operated at low (0.9 kg m-3d-1), moderate (1.9 kg m-3d-1) and high (3.7 kg m-3d-1) organic loading rates (OLRs) and the same ammonium loading rate (0.2 kg NH4-N m-3d-1) for 84 days. Complete removal of organic carbon and ammonium was achieved in all three reactors after start-up, while the nitrogen removal (denitrification) efficiency increased with the OLR: 0% at low, 38% at moderate, and 66% at high loading rate. The bacterial communities at different loading rates diverged rapidly after start-up and showed less than 50% similarity after 6 days, and below 40% similarity after 84 days. The three reactor microbiomes were dominated by different genera (mainly Meganema, Thauera, Paracoccus, and Zoogloea), but these genera have similar ecosystem functions of EPS production, denitrification and polyhydroxyalkanoate (PHA) storage. Many less abundant but persistent taxa were also detected within these functional groups. The bacterial communities were functionally redundant irrespective of the loading rate applied. At steady-state reactor operation, the identity of the core community members was rather stable, but their relative abundances changed considerably over time. Furthermore, nitrifying bacteria were low in relative abundance and diversity in all reactors, despite their large contribution to nitrogen turnover. The results suggest that the OLR has considerable impact on the composition of the granular sludge communities, but also that the granule communities can be dynamic even at steady-state reactor operation due to high functional redundancy of several key guilds. Knowledge about microbial diversity with specific functional guilds under different operating conditions can be important for engineers to predict the stability of reactor functions during the start-up and continued reactor operation.

14.
FEMS Microbiol Ecol ; 92(9)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27306553

RESUMO

Microorganisms colonize surfaces and develop biofilms through interactions that are not yet thoroughly understood, with important implications for water and wastewater systems. This study investigated the interactions between N-acyl homoserine lactone (AHL)-producing bacteria, yeasts and protists, and their contribution to biofilm development. Sixty-one bacterial strains were isolated from activated sludge and screened for AHL production, with Aeromonas sp. found to be the dominant AHL producer. Shewanella xiamenensis, Aeromonas allosaccharophila, Acinetobacter junii and Pseudomonas aeruginosa recorded the highest adherence capabilities, with S. xiamenensis being the most effective in surface colonization. Additionally, highly significant interactions (i.e. synergic or antagonistic) were described for dual and multistrain mixtures of bacterial strains (P. aeruginosa, S. xiamenensis, A. junii and Pseudomonas stutzeri), as well as for strongly adherent bacteria co-cultured with yeasts. In this last case, the adhered biomass in co-cultures was lower than the monospecific biofilms of bacteria and yeast, with biofilm observations by microscopy suggesting that bacteria had an antagonist effect on the whole or part of the yeast population. Finally, protist predation by Euplotes sp. and Paramecium sp. on Aeromonas hydrophila biofilms not only failed to reduce biofilm formation, but also recorded unexpected results leading to the development of aggregates of high density and complexity.


Assuntos
Acil-Butirolactonas/metabolismo , Biofilmes/crescimento & desenvolvimento , Interações Microbianas , Esgotos/microbiologia , Bactérias/isolamento & purificação , Bactérias/metabolismo , Aderência Bacteriana , Fenômenos Fisiológicos Bacterianos , Leveduras/isolamento & purificação , Leveduras/metabolismo , Leveduras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA