Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Genet ; 60(10): 939-950, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37012052

RESUMO

BACKGROUND: Although retinitis pigmentosa (RP) is the most common type of hereditary retinal dystrophy, approximately 25%-45% of cases remain without a molecular diagnosis. von Willebrand factor A domain containing 8 (VWA8) encodes a mitochondrial matrix-targeted protein; its molecular function and pathogenic mechanism in RP remain unexplained. METHODS: Family members of patients with RP underwent ophthalmic examinations, and peripheral blood samples were collected for exome sequencing, ophthalmic targeted sequencing panel and Sanger sequencing. The importance of VWA8 in retinal development was demonstrated by a zebrafish knockdown model and cellular and molecular analysis. RESULTS: This study recruited a Chinese family of 24 individuals with autosomal-dominant RP and conducted detailed ophthalmic examinations. Exome sequencing analysis of six patients revealed heterozygous variants in VWA8, namely, the missense variant c.3070G>A (p.Gly1024Arg) and nonsense c.4558C>T (p.Arg1520Ter). Furthermore, VWA8 expression was significantly decreased both at the mRNA and protein levels. The phenotypes of zebrafish with VWA8 knockdown are similar to those of clinical individuals harbouring VWA8 variants. Moreover, VWA8 defects led to severe mitochondrial damage, resulting in excessive mitophagy and the activation of apoptosis. CONCLUSIONS: VWA8 plays a significant role in retinal development and visual function. This finding may provide new insights into RP pathogenesis and potential genes for molecular diagnosis and targeted therapy.


Assuntos
Retinose Pigmentar , Peixe-Zebra , Animais , Humanos , Mitofagia/genética , Mutação/genética , Linhagem , Retinose Pigmentar/diagnóstico , Peixe-Zebra/genética
2.
BMC Ophthalmol ; 24(1): 100, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438845

RESUMO

BACKGROUND AND PURPOSE: The objective of this investigation was to assess the therapeutic efficacy of distinct glucocorticoid therapy dosages in the management of acute nonarteritic anterior ischemic optic neuropathy (NAION). MATERIALS AND METHODS: This retrospective, unmasked, and non-randomized study included a total of 85 patients. The patients were categorized into four groups: Group 1 (control) consisted of 15 patients who did not receive glucocorticoids, Group 2 included 16 patients administered with oral prednisone at a dosage of 1 mg/kg/d for 14 days, Group 3 comprised 30 patients who received 250 units of methylprednisolone once daily for 3 days, followed by oral prednisone at a dosage of 1 mg/kg/d for 11 days, and Group 4 encompassed 24 patients who received 500 units of methylprednisolone once daily for 3 days, followed by oral prednisone at a dosage of 1 mg/kg/d for 11 days. The best-corrected visual acuity (BCVA) was assessed at baseline and the final follow-up (> 7 days post-treatment). The changes in visual acuity between baseline and the 7-14 day follow-up, as well as between baseline and the concluding appraisal, were employed as metrics for assessing the extent of visual enhancement. RESULTS: No significant differences were noted in the final visual outcomes or in the changes between final visual acuity and baseline across the four groups. In Group 1 (control), the best-corrected visual acuity (BCVA) remained unchanged during final follow-ups compared to baseline. Conversely, the intervention groups exhibited statistically significant enhancements in BCVA during final follow-up (p = 0.012, p = 0.03, and p = 0.009 for Group 2, Group 3, and Group 4, respectively) when compared to baseline. During the 7-14 day follow-up, there was a significant difference in the changes between baseline BCVA and follow-up BCVA across the groups (p = 0.035). Go a step further by Bonferroni correction for multiple comparisons, group 4 showed a greater change in vision compared with group1 (p = 0.045). CONCLUSION: Our study on acute nonarteritic anterior ischemic optic neuropathy (NAION) showed no significant final visual outcome differences. Nevertheless, Groups 2, 3, and 4 demonstrated improved best-corrected visual acuity (BCVA) during the final follow-up. Notably, a 500-unit dose of methylprednisolone resulted in short-term BCVA enhancement. This suggests potential consideration of 500 units of methylprednisolone for short-term NAION vision improvement, despite its limited long-term impact.


Assuntos
Glucocorticoides , Neuropatia Óptica Isquêmica , Humanos , Prednisona/uso terapêutico , Neuropatia Óptica Isquêmica/tratamento farmacológico , Estudos Retrospectivos , Metilprednisolona
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244423

RESUMO

Optic neuropathies are leading causes of irreversible visual impairment and blindness, currently affecting more than 100 million people worldwide. Glaucoma is a group of optic neuropathies attributed to progressive degeneration of retinal ganglion cells (RGCs). We have previously demonstrated an increase in survival of RGCs by the activation of macrophages, whereas the inhibition of macrophages was involved in the alleviation on endotoxin-induced inflammation by antagonist of growth hormone-releasing hormone (GHRH). Herein, we hypothesized that GHRH receptor (GHRH-R) signaling could be involved in the survival of RGCs mediated by inflammation. We found the expression of GHRH-R in RGCs of adult rat retina. After optic nerve crush, subcutaneous application of GHRH agonist MR-409 or antagonist MIA-602 promoted the survival of RGCs. Both the GHRH agonist and antagonist increased the phosphorylation of Akt in the retina, but only agonist MR-409 promoted microglia activation in the retina. The antagonist MIA-602 reduced significantly the expression of inflammation-related genes Il1b, Il6, and Tnf Moreover, agonist MR-409 further enhanced the promotion of RGC survival by lens injury or zymosan-induced macrophage activation, whereas antagonist MIA-602 attenuated the enhancement in RGC survival. Our findings reveal the protective effect of agonistic analogs of GHRH on RGCs in rats after optic nerve injury and its additive effect to macrophage activation, indicating a therapeutic potential of GHRH agonists for the protection of RGCs against optic neuropathies especially in glaucoma.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/agonistas , Macrófagos/patologia , Neuroproteção , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Inflamação/genética , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neuroproteção/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos F344 , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Fator de Transcrição STAT3/metabolismo , Sermorelina/análogos & derivados , Sermorelina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Corpo Vítreo/efeitos dos fármacos , Corpo Vítreo/metabolismo , Zimosan/farmacologia
4.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674129

RESUMO

To investigate the plasma lipoprotein subclasses in patients with primary open-angle glaucoma (POAG), a total of 20 Chinese POAG patients on intraocular pressure (IOP)-lowering treatment and 20 age-matched control subjects were recruited. Based on the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), the study subjects were divided into elevated- and normal-level subgroups. The plasma lipoprotein, lipoprotein subclasses, and oxidized LDL (oxLDL) levels were quantitatively measured. The discrimination potential of the lipoproteins was evaluated using the area under the receiver operating characteristic curve (AUC), and their correlation with clinical parameters was also evaluated. Compared to the control subjects with elevated TC and/or LDL-C levels, the levels of TC, LDL-C, non-high-density lipoprotein cholesterol (non-HDL), LDL subclass LDL3 and small dense LDL (sdLDL), and oxLDL were significantly higher in POAG patients with elevated TC and/or LDL-C levels. No differences in any lipoproteins or the subclasses were found between the POAG patients and control subjects with normal TC and LDL-C levels. Moderate-to-good performance of TC, LDL-C, non-HDL, LDL3, sdLDL, and oxLDL was found in discriminating between the POAG patients and control subjects with elevated TC and/or LDL-C levels (AUC: 0.710-0.950). Significant negative correlations between LDL3 and sdLDL with retinal nerve fiber layer (RNFL) thickness in the superior quadrant and between LDL3 and average RNFL thickness were observed in POAG patients with elevated TC and/or LDL-C levels. This study revealed a significant elevation of plasma lipoproteins, especially the LDL subclasses, in POAG patients with elevated TC and/or LDL-C levels, providing insights on monitoring specific lipoproteins in POAG patients with elevated TC and/or LDL-C.


Assuntos
Glaucoma de Ângulo Aberto , Humanos , Glaucoma de Ângulo Aberto/sangue , Glaucoma de Ângulo Aberto/classificação , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Lipoproteínas LDL/sangue , Lipoproteínas/sangue , Lipoproteínas/classificação , Pressão Intraocular , LDL-Colesterol/sangue , Estudos de Casos e Controles , China , Povo Asiático , Colesterol/sangue , População do Leste Asiático
5.
J Transl Med ; 21(1): 661, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741987

RESUMO

BACKGROUND: The prevention and treatment of osteoarthritis (OA) pose a major challenge in its research. The synovium is a critical tissue in the systematic treatment of OA. The present study aimed to investigate potential target genes and their correlation with iron overload in OA patients. METHODS: The internal datasets for analysis included the microarray datasets GSE46750, GSE55457, and GSE56409, while the external datasets for validation included GSE12021 and GSE55235. The GSE176308 dataset was used to generate single-cell RNA sequencing profiles. To investigate the expression of the target genes in synovial samples, quantitative reverse transcription-PCR, western blotting, and immunohistochemical assay were conducted. ELISA was used to detect the levels of ferritin and Fe2+ in both serum and synovium. RESULTS: JUN and ZFP36 were screened from the differentially expressed genes, and their mRNA were significantly reduced in the OA synovium compared to that in normal synovium. Subsequently, complex and dynamically evolving cellular components were observed in the OA synovium. The mRNA level of JUN and ZFP36 differed across various cell clusters of OA synovium and correlated with immune cell infiltration. Moreover, ferritin and Fe2+ were significantly increased in the serum and synovium of OA patients. Further, we found that JUN elevated and ZFP36 decreased at protein level. CONCLUSIONS: The synovium is a sensitive tissue for mapping the adverse effects of systemic iron overload in OA. JUN and ZFP36 represent potential target genes for attenuating iron overload during OA treatment. Some discrepancies between the transcription and protein levels of JUN suggest that post-transcriptional modifications may be implicated. Future studies should also focus on the roles of JUN and ZFP36 in inducing changes in cellular components in the synovium during OA pathogenesis.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Sobrecarga de Ferro , Osteoartrite , Humanos , Bioensaio , Ferritinas , Sobrecarga de Ferro/genética , Osteoartrite/genética
6.
Exp Eye Res ; 237: 109708, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37913917

RESUMO

Experimental autoimmune encephalomyelitis (EAE), induced by the immunization of myelin oligodendrocyte glycoprotein (MOG), is related to human MOG antibody-associated disease (MOGAD). Neuroinflammation and demyelination of the optic nerve can lead to retinal ganglion cell (RGC) death and axonal damage in MOGAD. Here, we aimed to evaluate the structural changes in RGCs longitudinally by in vivo imaging in mice with RGCs expressing yellow fluorescent protein along the course of EAE. Successful induction of EAE was confirmed by the neurological function scores and histology analyses. The changes in the thickness of ganglion cell complex (GCC) layer and RGC survival and dendrites were monitored longitudinally along the course of EAE. Before the onset of EAE, there were no significant changes in the number and morphology of RGCs and the thickness of the GCC layer as compared to the mice without EAE induction. After the onset of EAE, the thickness of the GCC layer and the RGC number and dendritic network all gradually decreased along the course of EAE. Notably, dendritic shrinkage could be detected earlier than the thinning of the GCC layer. In summary, this study delineated the longitudinal profile of RGC structural changes in EAE mice, providing an assessment platform for monitoring outcomes of RGC treatments.


Assuntos
Encefalomielite Autoimune Experimental , Células Ganglionares da Retina , Humanos , Camundongos , Animais , Células Ganglionares da Retina/patologia , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Retina/patologia , Nervo Óptico/patologia , Dendritos , Camundongos Endogâmicos C57BL
7.
Biochem Biophys Res Commun ; 629: 12-16, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36088804

RESUMO

Both PRPF31 and PRPH2 are the causative genes for retinitis pigmentosa. And both of them are associated with the balance of rhodopsin. In this study, we aim to investigate the co-expression and interaction of PRPF31 and PRPH2. We used PRPF31-eGFP, PRPF31-3xFlag and PRPH2-mCherry vectors were transfected into HEK293T and APRE-19 cells. Immunoblotting and co-immunoprecipitation (Co-IP) were used for gene expression validation and protein interaction. Immunofluorescence staining assay was used to test the co-localization analysis of PRPF31 and PRPH2. Co-IP experiments showed that PRPF31 could be pulled down with an anti-PRPH2 antibody. There was co-localization between PRPF31 and PRPH2 in HEK293T, APRE-19 and mouse retina. The Co-IP and co-localization experiments suggest that PRPF31 interacted with PRPH2.


Assuntos
Retinose Pigmentar , Rodopsina , Animais , Proteínas do Olho/genética , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Mutação , Linhagem , Periferinas , Retinose Pigmentar/genética , Rodopsina/genética
8.
Exp Eye Res ; 222: 109159, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753433

RESUMO

Retinal ganglion cell (RGC) death is a critical pathological trigger leading to irreversible visual impairment and blindness after optic nerve (ON) injury. Yet, there is still no effective clinical treatment to rescue RGC death after ON injury. Understanding the involvement of different modes of cell death post-ON injury could facilitate the development of targeting treatments against RGC death. Herein we aimed to characterize the regulation of 11 modes of cell death simultaneously and longitudinally in mouse retina post-ON injury. The number of RGCs gradually decreased from Day 3-14 in mice post-ON injury. Increase in the apoptosis (cleaved caspase-3), autolysis (cleaved cathespin B) and pyroptosis (cleaved caspase-1) marker expression in the retina began at Day 3 post-ON injury. Meanwhile, the markers for autophagy (Atg7 and Becn1) and phagocytosis (Mfge8 and Mertk) were downregulated from Day 1 to Day 5. Additionally, the expression of ferroptosis marker (4-hydroxynonenal) was upregulated from Day 7 to Day 14 post-ON injury following the early reduction of Gpx4. Yet, the reduction of parthanatos, sarmoptosis, and mitochondrial permeable transition could be related to autophagy and apoptosis. The markers for necroptosis did not show significant changes post-ON injury. In summary, this study revealed that the activation of apoptosis, autolysis, pyroptosis and ferroptosis, together with the early downregulation of autophagy and phagocytosis, are the major modes of cell death involved in the RGC death post-ON injury. Simultaneously targeting multiple modes of cell death at different time courses could be a potential treatment approach against RGC death for traumatic optic neuropathy.


Assuntos
Traumatismos do Nervo Óptico , Animais , Apoptose , Morte Celular , Camundongos , Traumatismos do Nervo Óptico/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/patologia
9.
Exp Eye Res ; 214: 108864, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826419

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen for coronavirus disease 2019 (COVID-19) pandemic. Its infection depends on the binding of spike protein to the host cell receptor angiotensin-converting enzyme 2 (ACE2), type II transmembrane serine protease (TMPRSS2) and neuropilin-1 (NRP1). Hydroxychloroquine has been applied as one of the COVID-19 treatment strategies. Here we aimed to evaluate hydroxychloroquine treatment on SARS-CoV-2 receptor expression in human primary pterygium and conjunctival cells and its potential influences. Expression of ACE2, TMPRSS2 and NRP1 proteins were found in the epithelial layer of both primary pterygium and conjunctiva tissues as well as in their isolated fibroblasts. High concentration of hydroxychloroquine treatment significantly reduced the viability of both primary pterygium and conjunctival cells. ACE2 protein expression was significantly decreased in both pterygium and conjunctival cells after hydroxychloroquine treatment. Hydroxychloroquine also reduced NRP1 protein expression in conjunctival cells. In contrast, TMPRSS2 protein expression showed slightly increased in conjunctival cells. Notably, ROS production and SOD2 expression was significantly elevated in both pterygium and conjunctival cells after hydroxychloroquine treatment. In summary, this study revealed the reduction of ACE2 and NRP1 expression by hydroxychloroquine in human primary pterygium and conjunctival fibroblasts; yet with the increase in TMPRSS2 expression and oxidative stress and decrease in cell viability. Implementation of hydroxychloroquine for COVID-19 treatment should be carefully considered with its potential side effects and in combination with TMPRSS2 inhibitor.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , Tratamento Farmacológico da COVID-19 , Túnica Conjuntiva/anormalidades , Hidroxicloroquina/uso terapêutico , Neuropilina-1/biossíntese , Pterígio/tratamento farmacológico , SARS-CoV-2 , Serina Endopeptidases/biossíntese , Biomarcadores/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Comorbidade , Humanos , Pandemias , Pterígio/diagnóstico , Pterígio/epidemiologia
10.
Cell Tissue Res ; 381(1): 71-81, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32043210

RESUMO

Periodontal ligament (PDL) stem cell properties are critical in the periodontal tissue regeneration for periodontitis. Previously, we have demonstrated that cigarette smoking attenuates PDL-derived stem cell (PDLSC) regenerative properties. Here, we report the findings on the regenerative properties of human PDLSCs with different donor ages and the underlying mechanisms. Human PDLSCs from 18 independent donors were divided into different age groups (≤ 20, 20-40, and > 40 years old). The proliferation of PDLSCs with donor age of ≤ 20 years old was significantly higher than that of the 20-40- and > 40-years-old groups, whereas the migration of PDLSCs with donor age of ≤ 20 and 20-40 years old was significantly higher than that of the > 40-years-old group. Moreover, the mesodermal lineage differentiation capabilities of PDLSCs were also higher in the donor age group of ≤ 20 years old than the donor age of > 40 years old. In addition, shorter telomere length and lower expression of SSEA4 were found in PDLSCs with donor age of > 40 years old, compared with those with donor age of ≤ 20-years-old group. Besides, PDLSCs with donor age of 20-40 and > 40 years old had higher IL6 and CXCL8 gene expressions. In summary, results from this study revealed the attenuated proliferation, migration, and mesodermal lineage differentiation properties in human PDLSCs with older donor ages. Donor age of PDLSCs should be considered as the selection criteria for the periodontal tissue regeneration treatment.


Assuntos
Fatores Etários , Periodontite Crônica/terapia , Ligamento Periodontal/citologia , Antígenos Embrionários Estágio-Específicos/metabolismo , Células-Tronco/citologia , Telômero/ultraestrutura , Adulto , Proliferação de Células , Células Cultivadas , Feminino , Regeneração Tecidual Guiada Periodontal , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Osteogênese , Adulto Jovem
11.
Exp Eye Res ; 193: 107955, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32017940

RESUMO

Gene therapy has been proposed as a feasible strategy for RGC survival and optic nerve regeneration. Some preclinical and clinical studies revealed intraocular inflammation after intravitreal injection of adeno-associated virus (AAV) by slit-lamp or indirect ophthalmoscope. Here we evaluate the longitudinal profile of immediate inflammatory responses after AAV2 injection in rat retina and vitreous body by optical coherence tomography (OCT). Adult Fischer F344 rats were intravitreally injected once with saline, AAV2 or zymosan. Retinal thickness and cell infiltration were recorded by OCT longitudinally for 2 months and verified by histological analysis. The transduction rate of single intravitreal AAV2 injection was 21.3 ± 4.9% of whole retina, and the transduction efficiency on RGCs was 91.5 ± 2.5% in the transduced area. Significant increase in cell infiltration was observed from Day 1-3 after AAV2 injection, compared to very few infiltrating cells observed in the saline-injected group. The infiltrating cells ceased at Day 5 after intravitreal injection and remained absent at 2 months. The thicknesses of total and inner retina were increased along Day 1-3 after AAV2 injection, but reverted to normal afterwards. The surviving RGCs in the AAV2-injected groups at Day 14 showed no significant difference compared to saline-injected group. In summary, this study revealed the immediate inflammatory responses and retinal edema after intravitreal AAV2 injection in normal rats, without influencing long-term retinal thickness and RGC survival. OCT can be implemented for the time-lapse in vivo evaluation of inflammatory response after AAV-mediated gene therapy through intravitreal injection.


Assuntos
Dependovirus , Terapia Genética/métodos , Doenças do Nervo Óptico/terapia , Células Ganglionares da Retina/patologia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Injeções Intravítreas , Doenças do Nervo Óptico/diagnóstico , Ratos , Ratos Endogâmicos F344 , Tomografia de Coerência Óptica , Transdução Genética
12.
J Cell Biochem ; 120(8): 13382-13391, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30916825

RESUMO

Impaired trabecular meshwork (TM) outflow is implicated in the pathogenesis of primary open-angle glaucoma (POAG). We previously identified the association of a caveolin-1 (CAV1) variant with POAG by genome-wide association study. Here we report a study of CAV1 knockout (KO) effect on human TM cell properties. We generated human CAV1-KO TM cells by CRISPR/Cas9 technology, and we found that the CAV1-KO TM cells less adhered to the surface coating than the wildtype TM cells by 69.34% ( P < 0.05), but showed no difference in apoptosis. Higher endocytosis ability of dextran and transferrin was also observed in the CAV1-KO TM cells (4.37 and 1.89-fold respectively, P < 0.001), compared to the wildtype TM cells. Moreover, the CAV1-KO TM cells had higher expression of extracellular matrix-degrading enzyme genes ( ADMTS13 and MMP14) as well as autophagy-related genes ( ATG7 and BECN1) and protein (LC3B-II) than the wildtype TM cells. In summary, results from this study showed that the CAV1-KO TM cells have reduced adhesion with higher extracellular matrix-degrading enzyme expression, but increased endocytosis and autophagy activities, indicating that CAV1 could be involved in the regulation of adhesion, endocytosis, and autophagy in human TM cells.


Assuntos
Autofagia/fisiologia , Caveolina 1/metabolismo , Adesão Celular/fisiologia , Endocitose/fisiologia , Malha Trabecular/citologia , Malha Trabecular/metabolismo , Autofagia/genética , Caveolina 1/genética , Adesão Celular/genética , Endocitose/genética , Estudo de Associação Genômica Ampla , Humanos
13.
Stem Cells ; 36(6): 844-855, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476565

RESUMO

Optic neuropathies are the leading cause of irreversible blindness and visual impairment in the developed countries, affecting more than 80 million people worldwide. While most optic neuropathies have no effective treatment, there is intensive research on retinal ganglion cell (RGC) protection and axon regeneration. We previously demonstrated potential of human periodontal ligament-derived stem cells (PDLSCs) for retinal cell replacement. Here, we report the neuroprotective effect of human PDLSCs to ameliorate RGC degeneration and promote axonal regeneration after optic nerve crush (ONC) injury. Human PDLSCs were intravitreally injected into the vitreous chamber of adult Fischer rats after ONC in vivo as well as cocultured with retinal explants in vitro. Human PDLSCs survived in the vitreous chamber and were maintained on the RGC layer even at 3 weeks after ONC. Immunofluorescence analysis of ßIII-tubulin and Gap43 showed that the numbers of surviving RGCs and regenerating axons were significantly increased in the rats with human PDLSC transplantation. In vitro coculture experiments confirmed that PDLSCs enhanced RGC survival and neurite regeneration in retinal explants without inducing inflammatory responses. Direct cell-cell interaction and elevated brain-derived neurotrophic factor secretion, but not promoting endogenous progenitor cell regeneration, were the RGC protective mechanisms of human PDLSCs. In summary, our results revealed the neuroprotective role of human PDLSCs by strongly promoting RGC survival and axonal regeneration both in vivo and in vitro, indicating a therapeutic potential for RGC protection against optic neuropathies. Stem Cells 2018;36:844-855.


Assuntos
Axônios/fisiologia , Expressão Gênica/genética , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/genética , Ligamento Periodontal/fisiologia , Células Ganglionares da Retina/metabolismo , Células-Tronco/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Masculino , Ratos
14.
PLoS Genet ; 12(6): e1006090, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27294265

RESUMO

Cataracts are a significant public health problem with no proven methods for prevention. Discovery of novel disease mechanisms to delineate new therapeutic targets is of importance in cataract prevention and therapy. Herein, we report that mutations in the RagA GTPase (RRAGA), a key regulator of the mechanistic rapamycin complex 1 (mTORC1), are associated with autosomal dominant cataracts. We performed whole exome sequencing in a family with autosomal dominant juvenile-onset cataracts, and identified a novel p.Leu60Arg mutation in RRAGA that co-segregated with the disease, after filtering against the dbSNP database, and at least 123,000 control chromosomes from public and in-house exome databases. In a follow-up direct screening of RRAGA in another 22 families and 142 unrelated patients with congenital or juvenile-onset cataracts, RRAGA was found to be mutated in two unrelated patients (p.Leu60Arg and c.-16G>A respectively). Functional studies in human lens epithelial cells revealed that the RRAGA mutations exerted deleterious effects on mTORC1 signaling, including increased relocation of RRAGA to the lysosomes, up-regulated mTORC1 phosphorylation, down-regulated autophagy, altered cell growth or compromised promoter activity. These data indicate that the RRAGA mutations, associated with autosomal dominant cataracts, play a role in the disease by acting through disruption of mTORC1 signaling.


Assuntos
Catarata/genética , Células Epiteliais/patologia , Cristalino/patologia , Proteínas Monoméricas de Ligação ao GTP/genética , Complexos Multiproteicos/genética , Serina-Treonina Quinases TOR/genética , Adolescente , Adulto , Autofagia/genética , Sequência de Bases , Proliferação de Células/genética , Análise Mutacional de DNA , Exoma/genética , Feminino , Humanos , Cristalino/citologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Complexos Multiproteicos/metabolismo , Análise de Sequência de DNA , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
15.
Heliyon ; 10(7): e28806, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617955

RESUMO

The conjunctiva of primary open angle glaucoma patients showed high level of oxidized low-density lipoprotein (ox-LDL), which is associated with the inflammatory response. Microglia and macrophages are the immune cells involved in retinal ganglion cell survival regulation; yet, their roles of the ox-LDL-induced inflammation in glaucoma remain elusive. Here we aimed to investigate the lipid uptake, inflammatory cytokine expression, and metabolomics profiles of human and murine-derived microglial and macrophage cell lines treated with ox-LDL. Under the same ox-LDL concentration, macrophages exhibited higher lipid uptake and expression of pro-inflammatory cytokines as compared to microglia. The ox-LDL increased the levels of fatty acid metabolites in macrophages and sphingomyelin metabolites in microglia. In summary, this study revealed the heterogeneity in the inflammatory capacity and metabolic profiles of macrophages and microglia under the stimulation of ox-LDL.

16.
Neural Regen Res ; 19(5): 1112-1118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862216

RESUMO

Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma, the leading cause of irreversible blindness. We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury. To investigate the underlying mechanism, in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor (4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole) by intravitreal injection. We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages. Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors. Furthermore, casein kinase-2 inhibition downregulated the expression of genes (Cck, Htrsa, Nef1, Htrlb, Prph, Chat, Slc18a3, Slc5a7, Scn1b, Crybb2, Tsga10ip, and Vstm21) involved in intraocular pressure elevation. Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.

17.
Psychiatry Res ; 327: 115233, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567113

RESUMO

BACKGROUND: Loneliness and social isolation usually increase the risk of mental disorders. However, this association among Chinese medical residents during the COVID-19 pandemic remains unclear. METHODS: This study was conducted in September 2022; 1,338 medical residents from three hospitals in Northeastern China were included in the final analysis. The data were collected via online self-administered questionnaires. Adjusted odds ratios and 95% confidence intervals were determined for adjusting for potential confounders by binary logistic regression. RESULTS: Among the 1,338 participants, 12.93% (173), 9.94% (133), and 9.72% (130) had experienced major depression, major anxiety, and suicidal ideation, respectively. Further, 24.40% (327) and 44.50% (596) of the total participants had experienced loneliness and social isolation. Loneliness increased the risk of major depression, major anxiety, and suicidal ideation (all p<0.001); Compared with the lowest quartile, the odds ratios of the highest quartile were 4.81, 4.63, and 5.34. The same result was obtained in relation to social isolation (all p<0.001). CONCLUSIONS: The findings of this study revealed a considerable prevalence of loneliness, social isolation, and mental disorders among Chinese medical residents during the COVID-19 pandemic. Both loneliness and social isolation increased the risk of major depression, major anxiety, and suicidal ideation.


Assuntos
COVID-19 , Internato e Residência , Transtornos Mentais , Humanos , Solidão , COVID-19/epidemiologia , Estudos Transversais , Pandemias , Isolamento Social , Transtornos Mentais/epidemiologia , Ideação Suicida , Depressão/epidemiologia
18.
Photobiomodul Photomed Laser Surg ; 41(1): 17-25, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36629903

RESUMO

Objective: To assess the effects of intense pulsed light (IPL) on oxidative stress (OS) in perennial allergic conjunctivitis (PAC). Background: IPL treatment has been proven effective for dry eye disease (DED). However, we have observed that, after IPL treatment, some patients with DED combined with allergic conjunctivitis (AC), an immune response condition in which excessive OS causes and exacerbates inflammatory damage, not only show an improvement in eye dryness, but also their AC-related eye itching is relieved. The mechanism by which IPL inhibits allergic reactions is not clear. Methods: Five patients with moderate-to-severe PAC were given two IPL treatments on the periorbital skin with a 2-week interval. Visual analog scale (VAS) scores and signs of AC, including eye redness and conjunctival follicles, were assessed before the first treatment (day 1) and 2 weeks after the second treatment (day 30). Tears were also collected at the same time, and lipid oxidation (LPO) metabolite analysis was performed using liquid chromatography tandem mass spectrometry (LC-MS/MS) to investigate the effects of IPL on OS response. Results: The average VAS score significantly decreased with treatment (30.2 for day 1, 10.6 for day 30; p < 0.001). The general signs of PAC showed no difference (p > 0.05). LPO metabolite analysis revealed that 17,18-diHETE, which is an oxidation product of eicosapentaenoic acid, and 13-OXoODE, which is an oxidation product of linoleic acid, are significantly downregulated after IPL treatment. Conclusions: The photothermal effect of IPL attenuates OS in PAC, and this seems to be one of the mechanisms by which IPL treatment improves PAC. Clinical Trial Registration number: ChiCTR1900022202.


Assuntos
Conjuntivite Alérgica , Síndromes do Olho Seco , Terapia de Luz Pulsada Intensa , Humanos , Conjuntivite Alérgica/tratamento farmacológico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Síndromes do Olho Seco/terapia , Terapia de Luz Pulsada Intensa/métodos
19.
PLoS One ; 18(5): e0286344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252932

RESUMO

BACKGROUND: The axonal growth capacity of retinal ganglion cells decreases dramatically within the first day of birth, and the axonal regeneration after injury in mature mammals is very limited. Here, this study aimed to delineate the transcriptomic changes associated with altered axonal growth capacity and to identify the key genes associated with axonal regeneration by the RNA sequencing (RNA-Seq) analysis. METHODS: The whole retinas from the mice of embryonic day (E) 20, postnatal day (P) 1 and P3 were collected at 6 hours after optic nerve crush (ONC). Differentially expressed genes (DEGs) for ONC or ages were identified by the RNA-Seq analysis. K-means analysis was conducted for the clustering of DEGs based on expression patterns. Enrichment of functions and signaling pathways analysis were performed based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and Gene Set Enrichment analysis (GSEA). Quantitative real time polymerase chain reaction (qRT-PCR) was used to validate the DEGs selected from the RNA-Seq analysis. RESULTS: In total, 5,408 DEGs were identified for ages, and 2,639 DEGs in neonatal mouse retina after ONC. K-means analysis revealed 7 clusters in age-DEGs and 11 clusters in ONC-DEGs. The GO, KEGG and GSEA pathway analyses identified significantly enrichment of DEGs in the visual perception and phototransduction for the age effect, and the break repair, neuron projection guidance, and immune system pathway for the ONC. PPI analysis identified hub genes in the axon-related gene cluster. The expressions of Mlc1, Zfp296, Atoh7, Ecel1, Creb5, Fosb, and Lcn2, thought to be involved in RGC death and axonal growth were validated by qRT-PCR. CONCLUSIONS: This study, for the first time, delineated the gene expression changes following ON injury in embryonic and neonatal mice, providing a new resource of age- and injury-driven data on axonal growth capacity.


Assuntos
Traumatismos do Nervo Óptico , Transcriptoma , Camundongos , Animais , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Animais Recém-Nascidos , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Perfilação da Expressão Gênica , Mamíferos/genética
20.
Open Life Sci ; 18(1): 20220760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027227

RESUMO

Non-adherent culture is critical for the transdifferentiation of stem cells from mesoderm to neuroectoderm. Sphere culture has been reported to directly induce the adipose tissue cells to neural stem cells. Here we aimed to evaluate continuous non-adherent culture on the transdifferentiation potential of human adipose-derived stem cells (ASCs) into retinal lineage. Human ASCs were induced into retinal lineage by the treatment of noggin, dickkopf-related protein 1, and IGF-1 (NDI) under adherent and non-adherent culture. The NDI induction treatment with the adherent culture for 21 days promoted robust expression of retinal markers in the induced ASCs as compared to those without NDI induction on the adherent culture. With continuous non-adherent culture for 21 days, human ASCs could highly express retinal marker genes even without NDI induction treatment as compared to those on the adherent culture. The combination of continuous non-adherent culture with the NDI induction did not show a significant upregulation of the retinal marker expression as compared to either NDI induction with the adherent culture or continuous non-adherent culture without NDI induction treatment. In summary, both non-adherent culture and NDI induction medium could independently promote the transdifferentiation of human ASCs into retinal lineage. Yet, their combination did not produce an enhancement effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA