RESUMO
Crystal phase, a critical structural characteristic beyond the morphology, size, dimension, facet, etc., determines the physicochemical properties of nanomaterials. As a group of layered nanomaterials with polymorphs, transition metal dichalcogenides (TMDs) have attracted intensive research attention due to their phase-dependent properties. Therefore, great efforts have been devoted to the phase engineering of TMDs to synthesize TMDs with controlled phases, especially unconventional/metastable phases, for various applications in electronics, optoelectronics, catalysis, biomedicine, energy storage and conversion, and ferroelectrics. Considering the significant progress in the synthesis and applications of TMDs, we believe that a comprehensive review on the phase engineering of TMDs is critical to promote their fundamental studies and practical applications. This Review aims to provide a comprehensive introduction and discussion on the crystal structures, synthetic strategies, and phase-dependent properties and applications of TMDs. Finally, our perspectives on the challenges and opportunities in phase engineering of TMDs will also be discussed.
RESUMO
Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.
RESUMO
Gold (Au), a transition metal with an atomic number of 79 in the periodic table of elements, was discovered in approximately 3000 B.C. Due to the ultrahigh chemical stability and brilliant golden color, Au had long been thought to be a most inert material and was widely utilized in art, jewelry, and finance. However, it has been found that Au becomes exceptionally active as a catalyst when its size shrinks to the nanometer scale. With continuous efforts toward the exploration of catalytic applications over the past decades, Au nanomaterials show critical importance in many catalytic processes. Besides catalysis, Au nanomaterials also possess other promising applications in plasmonics, sensing, biology and medicine, due to their unique localized surface plasmon resonance, intriguing biocompatibility, and superior stability. Unfortunately, the practical applications of Au nanomaterials could be limited because of the scarce reserves and high price of Au. Therefore, it is quite essential to further explore novel physicochemical properties and functions of Au nanomaterials so as to enhance their performance in different types of applications.Recently, phase engineering of nanomaterials (PEN), which involves the rearrangement of atoms in the unit cell, has emerged as a fantastic and effective strategy to adjust the intrinsic physicochemical properties of nanomaterials. In this Account, we give an overview of the recent progress on crystal phase control of Au nanomaterials using wet-chemical synthesis. Starting from a brief introduction of the research background, we first describe the development history of wet-chemical synthesis of Au nanomaterials and especially emphasize the key research findings. Subsequently, we introduce the typical Au nanomaterials with untraditional crystal phases and heterophases that have been observed, such as 2H, 4H, body-centered phases, and crystal-phase heterostructures. Importantly, crystal phase control of Au nanomaterials by wet-chemical synthesis is systematically described. After that, we highlight the importance of crystal phase control in Au nanomaterials by demonstrating the remarkable effect of crystal phases on their physicochemical properties (e.g., electronic and optical properties) and potential applications (e.g., catalysis). Finally, after a concise summary of recent advances in this emerging research field, some personal perspectives are provided on the challenges, opportunities, and research directions in the future.
RESUMO
To targeted overcome the multidrug resistance (MDR) and metastasis of liver tumors, we proposed to develop a palladium (Pd) agent based on a specific residue of human serum albumin (HSA) for multiacting on tumor cell and other components in the tumor microenvironment. To this end, a series of Pd(II) 2-acetylpyridine thiosemicarbazone compounds were optimized to obtain a Pd(II) compound (5b) with significant cytotoxicity against HepG2/ADM cells. Subsequently, we constructed a HSA-5b complex delivery system and revealed the structural mechanism of HSA delivering 5b. Importantly, 5b/HSA-5b effectively inhibited the growth and metastasis of multidrug resistant liver tumors, and HSA enhanced the targeting ability of 5b and reduced its side effects in vivo. Furthermore, we confirmed the mechanisms of 5b/HSA-5b integrating to overcome MDR and metastasis of liver tumors: multiacting on cancer cell, activating immune response, and inactivating cancer-associated fibroblasts.
Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Paládio , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Paládio/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Camundongos , Células Hep G2 , Camundongos Nus , Camundongos Endogâmicos BALB C , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Metástase Neoplásica , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/uso terapêuticoRESUMO
2D heterostructures are emerging as alternatives to conventional semiconductors, such as silicon, germanium, and gallium nitride, for next-generation electronics and optoelectronics. However, the direct growth of 2D heterostructures, especially for those with metastable phases still remains challenging. To obtain 2D transition metal dichalcogenides (TMDs) with designed phases, it is highly desired to develop phase-controlled synthetic strategies. Here, a facile chemical vapor deposition method is reported to prepare vertical 1H/1T' MoS2 heterophase structures. By simply changing the growth atmosphere, semimetallic 1T'-MoS2 can be in situ grown on the top of semiconducting 1H-MoS2 , forming vertical semiconductor/semimetal 1H/1T' heterophase structures with a sharp interface. The integrated device based on the 1H/1T' MoS2 heterophase structure displays a typical rectifying behavior with a current rectifying ratio of ≈103 . Moreover, the 1H/1T' MoS2 -based photodetector achieves a responsivity of 1.07 A W-1 at 532 nm with an ultralow dark current of less than 10-11 A. The aforementioned results indicate that 1H/1T' MoS2 heterophase structures can be a promising candidate for future rectifiers and photodetectors. Importantly, the approach may pave the way toward tailoring the phases of TMDs, which can help us utilize phase engineering strategies to promote the performance of electronic devices.
RESUMO
Two-dimensional (2D) metal nanomaterials have gained ever-growing research interest owing to their fascinating physicochemical properties and promising application, especially in the field of electrocatalysis. In this review, we briefly introduce the recent advances in wet-chemical synthesis of 2D metal nanomaterials. Subsequently, the catalytic performances of 2D metal nanomaterials in a variety of electrochemical reactions are illustrated. Finally, we summarize current challenges and highlight our perspectives on preparing high-performance 2D metal electrocatalysts.