RESUMO
OBJECTIVE: The remodelling of gut mycobiome (ie, fungi) during pregnancy and its potential influence on host metabolism and pregnancy health remains largely unexplored. Here, we aim to examine the characteristics of gut fungi in pregnant women, and reveal the associations between gut mycobiome, host metabolome and pregnancy health. DESIGN: Based on a prospective birth cohort in central China (2017 to 2020): Tongji-Huaxi-Shuangliu Birth Cohort, we included 4800 participants who had available ITS2 sequencing data, dietary information and clinical records during their pregnancy. Additionally, we established a subcohort of 1059 participants, which included 514 women who gave birth to preterm, low birthweight or macrosomia infants, as well as 545 randomly selected controls. In this subcohort, a total of 750, 748 and 709 participants had ITS2 sequencing data, 16S sequencing data and serum metabolome data available, respectively, across all trimesters. RESULTS: The composition of gut fungi changes dramatically from early to late pregnancy, exhibiting a greater degree of variability and individuality compared with changes observed in gut bacteria. The multiomics data provide a landscape of the networks among gut mycobiome, biological functionality, serum metabolites and pregnancy health, pinpointing the link between Mucor and adverse pregnancy outcomes. The prepregnancy overweight status is a key factor influencing both gut mycobiome compositional alteration and the pattern of metabolic remodelling during pregnancy. CONCLUSION: This study provides a landscape of gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health, which lays the foundation of the future gut mycobiome investigation for healthy pregnancy.
Assuntos
Microbioma Gastrointestinal , Micobioma , Humanos , Feminino , Gravidez , Microbioma Gastrointestinal/fisiologia , Adulto , Estudos Prospectivos , China , Metaboloma , Fungos/isolamento & purificação , Recém-NascidoRESUMO
BACKGROUND: The specific microbiota and associated metabolites linked to non-alcoholic fatty liver disease (NAFLD) are still controversial. Thus, we aimed to understand how the core gut microbiota and metabolites impact NAFLD. METHODS: The data for the discovery cohort were collected from the Guangzhou Nutrition and Health Study (GNHS) follow-up conducted between 2014 and 2018. We collected 272 metadata points from 1546 individuals. The metadata were input into four interpretable machine learning models to identify important gut microbiota associated with NAFLD. These models were subsequently applied to two validation cohorts [the internal validation cohort (n = 377), and the prospective validation cohort (n = 749)] to assess generalizability. We constructed an individual microbiome risk score (MRS) based on the identified gut microbiota and conducted animal faecal microbiome transplantation experiment using faecal samples from individuals with different levels of MRS to determine the relationship between MRS and NAFLD. Additionally, we conducted targeted metabolomic sequencing of faecal samples to analyse potential metabolites. RESULTS: Among the four machine learning models used, the lightGBM algorithm achieved the best performance. A total of 12 taxa-related features of the microbiota were selected by the lightGBM algorithm and further used to calculate the MRS. Increased MRS was positively associated with the presence of NAFLD, with odds ratio (OR) of 1.86 (1.72, 2.02) per 1-unit increase in MRS. An elevated abundance of the faecal microbiota (f__veillonellaceae) was associated with increased NAFLD risk, whereas f__rikenellaceae, f__barnesiellaceae, and s__adolescentis were associated with a decreased presence of NAFLD. Higher levels of specific gut microbiota-derived metabolites of bile acids (taurocholic acid) might be positively associated with both a higher MRS and NAFLD risk. FMT in mice further confirmed a causal association between a higher MRS and the development of NAFLD. CONCLUSIONS: We confirmed that an alteration in the composition of the core gut microbiota might be biologically relevant to NAFLD development. Our work demonstrated the role of the microbiota in the development of NAFLD.
Assuntos
Microbioma Gastrointestinal , Microbiota , Hepatopatia Gordurosa não Alcoólica , Pessoa de Meia-Idade , Humanos , Animais , Camundongos , Idoso , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Vida IndependenteRESUMO
BACKGROUND: Continuous glucose monitoring (CGM) devices provide detailed information on daily glucose control and glycemic variability. Yet limited population-based studies have explored the association between CGM metrics and fatty liver. We aimed to investigate the associations of CGM metrics with the degree of hepatic steatosis. METHODS: This cross-sectional study included 1180 participants from the Guangzhou Nutrition and Health Study. CGM metrics, covering mean glucose level, glycemic variability, and in-range measures, were separately processed for all-day, nighttime, and daytime periods. Hepatic steatosis degree (healthy: n = 698; mild steatosis: n = 242; moderate/severe steatosis: n = 240) was determined by magnetic resonance imaging proton density fat fraction. Multivariate ordinal logistic regression models were conducted to estimate the associations between CGM metrics and steatosis degree. Machine learning models were employed to evaluate the predictive performance of CGM metrics for steatosis degree. RESULTS: Mean blood glucose, coefficient of variation (CV) of glucose, mean amplitude of glucose excursions (MAGE), and mean of daily differences (MODD) were positively associated with steatosis degree, with corresponding odds ratios (ORs) and 95% confidence intervals (CIs) of 1.35 (1.17, 1.56), 1.21 (1.06, 1.39), 1.37 (1.19, 1.57), and 1.35 (1.17, 1.56) during all-day period. Notably, lower daytime time in range (TIR) and higher nighttime TIR were associated with higher steatosis degree, with ORs (95% CIs) of 0.83 (0.73, 0.95) and 1.16 (1.00, 1.33), respectively. For moderate/severe steatosis (vs. healthy) prediction, the average area under the receiver operating characteristic curves were higher for the nighttime (0.69) and daytime (0.66) metrics than that of all-day metrics (0.63, P < 0.001 for all comparisons). The model combining both nighttime and daytime metrics achieved the highest predictive capacity (0.73), with nighttime MODD emerging as the most important predictor. CONCLUSIONS: Higher CGM-derived mean glucose and glycemic variability were linked with higher steatosis degree. CGM-derived metrics during nighttime and daytime provided distinct and complementary insights into hepatic steatosis.
Assuntos
Biomarcadores , Automonitorização da Glicemia , Glicemia , Valor Preditivo dos Testes , Índice de Gravidade de Doença , Humanos , Estudos Transversais , Masculino , Pessoa de Meia-Idade , Feminino , Glicemia/metabolismo , China/epidemiologia , Idoso , Fatores de Tempo , Automonitorização da Glicemia/instrumentação , Biomarcadores/sangue , Fatores de Risco , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Fatores Etários , Medição de Risco , Aprendizado de Máquina , Fígado Gorduroso/sangue , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/epidemiologia , Monitoramento Contínuo da Glicose , População do Leste AsiáticoRESUMO
BACKGROUND: Circulating vitamin C concentrations have been associated with several cancers in observational studies, but little is known about the causal direction of the associations. This study aims to explore the potential causal relationship between circulating vitamin C and risk of five most common cancers in Europe. METHODS: We used summary-level data for genetic variants associated with plasma vitamin C in a large vitamin C genome-wide association study (GWAS) meta-analysis on 52,018 Europeans, and the corresponding associations with lung, breast, prostate, colon, and rectal cancer from GWAS consortia including up to 870,984 participants of European ancestry. We performed two-sample, bi-directional Mendelian randomization (MR) analyses using inverse-variance-weighted method as the primary approach, while using 6 additional methods (e.g., MR-Egger, weighted median-based, and mode-based methods) as sensitivity analysis to detect and adjust for pleiotropy. We also conducted a meta-analysis of prospective cohort studies and randomized controlled trials to examine the association of vitamin C intakes with cancer outcomes. RESULTS: The MR analysis showed no evidence of a causal association of circulating vitamin C concentration with any examined cancer. Although the odds ratio (OR) per one standard deviation increase in genetically predicted circulating vitamin C concentration was 1.34 (95% confidence interval 1.14 to 1.57) for breast cancer in the UK Biobank, this association could not be replicated in the Breast Cancer Association Consortium with an OR of 1.05 (0.94 to 1.17). Smoking initiation, as a positive control for our reverse MR analysis, showed a negative association with circulating vitamin C concentration. However, there was no strong evidence of a causal association of any examined cancer with circulating vitamin C. Sensitivity analysis using 6 different analytical approaches yielded similar results. Moreover, our MR results were consistent with the null findings from the meta-analysis exploring prospective associations of dietary or supplemental vitamin C intakes with cancer risk, except that higher dietary vitamin C intake, but not vitamin C supplement, was associated with a lower risk of lung cancer (risk ratio: 0.84, 95% confidence interval 0.71 to 0.99). CONCLUSIONS: These findings provide no evidence to support that physiological-level circulating vitamin C has a large effect on risk of the five most common cancers in European populations, but we cannot rule out very small effect sizes.
Assuntos
Neoplasias da Mama , Análise da Randomização Mendeliana , Ácido Ascórbico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Fatores de Risco , Vitamina DRESUMO
BACKGROUND: The early life risk factors of childhood obesity among preterm infants are unclear and little is known about the influence of the feeding practices. We aimed to identify early life risk factors for childhood overweight/obesity among preterm infants and to determine feeding practices that could modify the identified risk factors. METHODS: A total of 338,413 mother-child pairs were enrolled in the Jiaxing Birth Cohort (1999 to 2013), and 2125 eligible singleton preterm born children were included for analyses. We obtained data on health examination, anthropometric measurement, lifestyle, and dietary habits of each participant at their visits to clinics. An interpretable machine learning-based analytic framework was used to identify early life predictors for childhood overweight/obesity, and Poisson regression was used to examine the associations between feeding practices and the identified leading predictor. RESULTS: Of the eligible 2125 preterm infants (863 [40.6%] girls), 274 (12.9%) developed overweight/obesity at age 4-7 years. We summarized early life variables into 25 features and identified two most important features as predictors for childhood overweight/obesity: trajectory of infant BMI (body mass index) Z-score change during the first year of corrected age and maternal BMI at enrollment. According to the impacts of different BMI Z-score trajectories on the outcome, we classified this feature into the favored and unfavored trajectories. Compared with early introduction of solid foods (≤ 3 months of corrected age), introducing solid foods after 6 months of corrected age was significantly associated with 11% lower risk (risk ratio, 0.89; 95% CI, 0.82 to 0.97) of being in the unfavored trajectory. CONCLUSIONS: The trajectory of BMI Z-score change within the first year of life is the most important predictor for childhood overweight/obesity among preterm infants. Introducing solid foods after 6 months of corrected age is a recommended feeding practice for mitigating the risk of being in the unfavored trajectory.
Assuntos
Recém-Nascido Prematuro/crescimento & desenvolvimento , Aprendizado de Máquina/normas , Obesidade Infantil/complicações , Algoritmos , Criança , Pré-Escolar , China , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Prospectivos , Fatores de RiscoRESUMO
BACKGROUND: Mapping gut microecological features to serum metabolites (SMs) will help identify functional links between gut microbiome and cardiometabolic health. METHODS: This study encompassed 836-1021 adults over 9.7 year in a cohort, assessing metabolic syndrome (MS), carotid atherosclerotic plaque (CAP), and other metadata triennially. We analyzed mid-term microbial metagenomics, targeted fecal and serum metabolomics, host genetics, and serum proteomics. FINDINGS: Gut microbiota and metabolites (GMM) accounted for 15.1% overall variance in 168 SMs, with individual GMM factors explaining 5.65%-10.1%, host genetics 3.23%, and sociodemographic factors 5.95%. Specifically, GMM elucidated 5.5%-49.6% variance in the top 32 GMM-explained SMs. Each 20% increase in the 32 metabolite score (derived from the 32 SMs) correlated with 73% (95% confidence interval [CI]: 53%-95%) and 19% (95% CI: 11%-27%) increases in MS and CAP incidences, respectively. Among the 32 GMM-explained SMs, sebacic acid, indoleacetic acid, and eicosapentaenoic acid were linked to MS or CAP incidence. Serum proteomics revealed certain proteins, particularly the apolipoprotein family, mediated the relationship between GMM-SMs and cardiometabolic risks. INTERPRETATION: This study reveals the significant influence of GMM on SM profiles and illustrates the intricate connections between GMM-explained SMs, serum proteins, and the incidence of MS and CAP, providing insights into the roles of gut dysbiosis in cardiometabolic health via regulating blood metabolites. FUNDING: This study was jointly supported by the National Natural Science Foundation of China, Key Research and Development Program of Guangzhou, 5010 Program for Clinical Research of Sun Yat-sen University, and the 'Pioneer' and 'Leading goose' R&D Program of Zhejiang.
Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Metaboloma , Metabolômica , Humanos , Masculino , Feminino , Idoso , Metabolômica/métodos , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Proteômica/métodos , Metagenômica/métodos , Pessoa de Meia-Idade , Biomarcadores/sangue , Fezes/microbiologia , MultiômicaRESUMO
SCOPE: Little is known about the effect of blood vitamin D status on the gut mycobiota (i.e., fungi), a crucial component of the gut microbial ecosystem. The study aims to explore the association between 25-hydroxyvitamin D [25(OH)D] and gut mycobiota and to investigate the link between the identified mycobial features and blood glycemic traits. METHODS AND RESULTS: The study examines the association between serum 25(OH)D levels and the gut mycobiota in the Westlake Precision Birth Cohort, which includes pregnant women with gestational diabetes mellitus (GDM). The study develops a genetic risk score (GRS) for 25(OH)D to validate the observational results. In both the prospective and cross-sectional analyses, the vitamin D is associated with gut mycobiota diversity. Specifically, the abundance of Saccharomyces is significantly lower in the vitamin D-sufficient group than in the vitamin D-deficient group. The GRS of 25(OH)D is inversely associated with the abundance of Saccharomyces. Moreover, the Saccharomyces is positively associated with blood glucose levels. CONCLUSION: Blood vitamin D status is associated with the diversity and composition of gut mycobiota in women with GDM, which may provide new insights into the mechanistic understanding of the relationship between vitamin D levels and metabolic health.
Assuntos
Diabetes Gestacional , Microbioma Gastrointestinal , Vitamina D , Humanos , Feminino , Diabetes Gestacional/microbiologia , Diabetes Gestacional/sangue , Gravidez , Vitamina D/sangue , Vitamina D/análogos & derivados , Estudos Transversais , Microbioma Gastrointestinal/fisiologia , Adulto , Estudos Prospectivos , Glicemia/metabolismoRESUMO
While the human gut is home to a complex and diverse community of microbes, including bacteria and fungi, research on the gut microbiome has largely focused on bacteria, with relatively little attention given to the gut mycobiome. This study aims to investigate how diets with different dietary macronutrient distributions impact the gut mycobiome. We investigated gut mycobiome response to high-carbohydrate, low-fat (HC) and low-carbohydrate high-fat (LC) diet interventions based on a series of 72-day feeding-based n-of-1 clinical trials. A total of 30 participants were enrolled and underwent three sets of HC and LC dietary interventions in a randomized sequence. Each set lasted for 24 days with a 6-day washout period between dietary interventions. We collected and analyzed the fungal composition of 317 stool samples before and after each intervention period. To account for intra-individual variation across the three sets, we averaged the mycobiome data from the repeated sets for analysis. Of the 30 participants, 28 (aged 22-34 years) completed the entire intervention. Our results revealed a significant increase in gut fungal alpha diversity (p < 0.05) and significant changes in fungal composition (beta diversity, p < 0.05) after the HC dietary intervention. Specifically, we observed the enrichment of five fungal genera (Pleurotus, Kazachstania, Auricularia, Paraphaeosphaeria, Ustilaginaceae sp.; FDR < 0.052) and depletion of one fungal genus (Blumeria; FDR = 0.03) after the HC intervention. After the LC dietary intervention, one fungal genus was enriched (Ustilaginaceae sp.; FDR = 0.003), and five fungal genera were depleted (Blumeria, Agaricomycetes spp., Malassezia, Rhizopus, and Penicillium; FDR < 0.1). This study provides novel evidence on how the gut mycobiome structure and composition change in response to the HC and LC dietary interventions and reveals diet-specific changes in the fungal genera.
Assuntos
Microbioma Gastrointestinal , Micobioma , Humanos , Nutrientes , Dieta com Restrição de Gorduras , CarboidratosRESUMO
Background: Continuous glucose monitoring (CGM) has shown potential in improving maternal and neonatal outcomes in individuals with type 1/2 diabetes, but data in gestational diabetes mellitus (GDM) is limited. We aimed to explore the relationship between CGM-derived metrics during pregnancy and pregnancy outcomes among women with GDM. Methods: We recruited 1302 pregnant women with GDM at a mean gestational age of 26.0 weeks and followed them until delivery. Participants underwent a 14-day CGM measurement upon recruitment. The primary outcome was any adverse pregnancy outcome, defined as having at least one of the outcomes: preterm birth, large-for-gestational-age (LGA) birth, fetal distress, premature rupture of membranes, and neonatal intensive care unit (NICU) admission. The individual outcomes included in the primary outcome were considered as secondary outcomes. We conducted multivariable logistic regression to evaluate the association of CGM-derived metrics with these outcomes. Findings: Per 1-SD difference in time above range (TAR), glucose area under the curve (AUC), nighttime mean blood glucose (MBG), daytime MBG, and daily MBG was associated with higher risk of any adverse pregnancy outcome, with odds ratio: 1.22 (95% CI 1.08-1.36), 1.22 (95% CI 1.09-1.37), 1.18 (95% CI 1.05-1.32), 1.21 (95% CI 1.07-1.35), and 1.22 (95% CI 1.09-1.37), respectively. Time in range, TAR, AUC, nighttime MBG, daytime MBG, daily MBG, and mean amplitude of glucose excursions were positively associated, while time blow range was inversely associated with the risk of LGA. Additionally, higher value for TAR was associated with higher risk of NICU admission. We further summarized the potential thresholds of TAR (2.5%) and daily MBG (4.8 mmol/L) to distinguish individuals with and without any adverse pregnancy outcome. Interpretation: The CGM-derived metrics may help identify individuals at higher risk of adverse pregnancy outcomes. These CGM biomarkers could serve as potential new intervention targets to maintain a healthy pregnancy status among women with GDM. Funding: National Key R&D Program of China, National Natural Science Foundation of China, and Westlake Laboratory of Life Sciences and Biomedicine.
RESUMO
Identification of protein quantitative trait loci (pQTL) helps understand the underlying mechanisms of diseases and discover promising targets for pharmacological intervention. For most important class of drug targets, genetic evidence needs to be generalizable to diverse populations. Given that the majority of the previous studies were conducted in European ancestry populations, little is known about the protein-associated genetic variants in East Asians. Based on data-independent acquisition mass spectrometry technique, we conduct genome-wide association analyses for 304 unique proteins in 2,958 Han Chinese participants. We identify 195 genetic variant-protein associations. Colocalization and Mendelian randomization analyses highlight 60 gene-protein-phenotype associations, 45 of which (75%) have not been prioritized in Europeans previously. Further cross-ancestry analyses uncover key proteins that contributed to the differences in the obesity-induced diabetes and coronary artery disease susceptibility. These findings provide novel druggable proteins as well as a unique resource for the trans-ancestry evaluation of protein-targeted drug discovery.
Assuntos
Doenças Cardiovasculares , Proteoma , Humanos , Proteoma/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Fenótipo , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The antibiotic resistance crisis underlies globally increasing failures in treating deadly bacterial infections, largely due to the selection of antibiotic resistance genes (ARG) collection, known as the resistome, in human gut microbiota. So far, little is known about the relationship between gut antibiotic resistome and host metabolic disorders such as type 2 diabetes (T2D). Here, metagenomic landscape of gut antibiotic resistome is profiled in a large multiomics human cohort (n = 1210). There is a significant overall shift in gut antibiotic resistome structure among healthy, prediabetes, and T2D groups. It is found that larger ARG diversity is associated with a higher risk of T2D. The novel diabetes ARG score is positively associated with glycemic traits. Longitudinal validation analysis confirms that the ARG score is associated with T2D progression, characterized by the change of insulin resistance. Collectively, the data describe the profiles of gut antibiotic resistome and support its close relationship with T2D progression.
Assuntos
Antibacterianos , Diabetes Mellitus Tipo 2 , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Fezes/microbiologia , Humanos , MetagenômicaRESUMO
BACKGROUND: Low-carbohydrate (e.g., Atkins) dietary pattern is one of the most effective diets for weight loss, but little is known about the characteristics of the gut microbiota accompanying low-carbohydrate diets-induced weight loss. This study aims to profile dynamics of gut bacteria and fungi accompanying modified Atkins diets-induced weight loss among overweight and obese adults. METHODS: Overweight and obese adults were screened to follow a modified Atkins diet plan (30% of energy from protein, 40% from carbohydrate and 30% from fat). We longitudinally profiled dynamics of gut bacteria and fungi based on 16S rRNA and ITS rRNA gene sequencing data, respectively. RESULTS: A total of 65 participants followed the modified Atkins diets for 20-231 days, with 61 and 27 participants achieving a weight loss of at least 5 and 10%, respectively. Most of the participants who achieved 10% weight loss also experienced improvements on metabolic health. The diversity of gut bacteria and fungi increased after a weight loss of 5% and kept stable thereafter. Bacteria genera including Lachnoclostridium and Ruminococcus 2 from Firmicutes phylum were depleted, while Parabacteroides and Bacteroides from Bacteroidetes phylum were enriched after weight loss. The inter-kingdom analysis found an intensive covariation between gut fungi and bacteria, involving more than half of the weight loss-associated bacteria. CONCLUSIONS: This study confirmed the modulation of bacterial and fungal composition during weight loss with the low-carbohydrate diets and showed previously unknown links between intestinal bacteria and fungi accompanying the weight loss.
RESUMO
BACKGROUND: Microbiome-gut-brain axis may be involved in the progression of age-related cognitive impairment and relevant brain structure changes, but evidence from large human cohorts is lacking. This study was aimed to investigate the associations of gut microbiome with cognitive impairment and brain structure based on multi-omics from three independent populations. METHODS: We included 1430 participants from the Guangzhou Nutrition and Health Study (GNHS) with both gut microbiome and cognitive assessment data available as a discovery cohort, of whom 272 individuals provided fecal samples twice before cognitive assessment. We selected 208 individuals with baseline microbiome data for brain magnetic resonance imaging during the follow-up visit. Fecal 16S rRNA and shotgun metagenomic sequencing, targeted serum metabolomics, and cytokine measurements were performed in the GNHS. The validation analyses were conducted in an Alzheimer's disease case-control study (replication study 1, n = 90) and another community-based cohort (replication study 2, n = 1300) with cross-sectional dataset. RESULTS: We found protective associations of specific gut microbial genera (Odoribacter, Butyricimonas, and Bacteroides) with cognitive impairment in both the discovery cohort and the replication study 1. Result of Bacteroides was further validated in the replication study 2. Odoribacter was positively associated with hippocampal volume (ß, 0.16; 95% CI 0.06-0.26, P = 0.002), which might be mediated by acetic acids. Increased intra-individual alterations in gut microbial composition were found in participants with cognitive impairment. We also identified several serum metabolites and inflammation-associated metagenomic species and pathways linked to impaired cognition. CONCLUSIONS: Our findings reveal that specific gut microbial features are closely associated with cognitive impairment and decreased hippocampal volume, which may play an important role in dementia development.
Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Estudos Transversais , Estudos de Casos e Controles , Cognição , Encéfalo/diagnóstico por imagemRESUMO
Evidence from human cohorts indicates that chronic insomnia is associated with higher risk of cardiometabolic diseases (CMD), yet whether gut microbiota plays a role is unclear. Here, in a longitudinal cohort (n = 1809), we find that the gut microbiota-bile acid axis may link the positive association between chronic insomnia and CMD. Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 are the main genera mediating the positive association between chronic insomnia and CMD. These results are also observed in an independent cross-sectional cohort (n = 6122). The inverse associations between those gut microbial biomarkers and CMD are mediated by certain bile acids (isolithocholic acid, muro cholic acid and nor cholic acid). Habitual tea consumption is prospectively associated with the identified gut microbiota and bile acids in an opposite direction compared with chronic insomnia. Our work suggests that microbiota-bile acid axis may be a potential intervention target for reducing the impact of chronic insomnia on cardiometabolic health.
Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Distúrbios do Início e da Manutenção do Sono , Ácidos e Sais Biliares , Doenças Cardiovasculares/epidemiologia , Ácido Cólico , Estudos Transversais , HumanosRESUMO
BACKGROUND: Dietary diversity is essential for human health. The gut ecosystem provides a potential link between dietary diversity, host metabolism, and health, yet this mechanism is poorly understood. OBJECTIVES: Here, we aimed to investigate the relation between dietary diversity and the gut environment as well as host metabolism from a multiomics perspective. METHODS: Two independent longitudinal Chinese cohorts (a discovery and a validation cohort) were included in the present study. Dietary diversity was evaluated with FFQs. In the discovery cohort (n = 1916), we performed shotgun metagenomic and 16S ribosomal ribonucleic acid (rRNA) sequencing to profile the gut microbiome. We used targeted metabolomics to quantify fecal and serum metabolites. The associations between dietary diversity and the microbial composition were replicated in the validation cohort (n = 1320). RESULTS: Dietary diversity was positively associated with α diversity of the gut microbiota. We identified dietary diversity-related gut environment features, including the microbial structure (ß diversity), 68 microbial genera, 18 microbial species, 8 functional pathways, and 13 fecal metabolites. We further found 332 associations of dietary diversity and related gut environment features with circulating metabolites. Both the dietary diversity and diversity-related features were inversely correlated with 4 circulating secondary bile acids. Moreover, 16 mediation associations were observed among dietary diversity, diversity-related features, and the 4 secondary bile acids. CONCLUSIONS: These results suggest that high dietary diversity is associated with the gut microbial environment. The identified key microbes and metabolites may serve as hypotheses to test for preventing metabolic diseases.
Assuntos
Microbioma Gastrointestinal , Ácidos e Sais Biliares , China , Ecossistema , Fezes/química , Humanos , Estudos Prospectivos , RNA Ribossômico 16S/genéticaRESUMO
In this study, nine congeners of polybrominated diphenyl ethers (PBDEs) and sixteen congeners of polycyclic aromatic hydrocarbons (PAHs) were measured in water samples to elucidate their spatial distribution, congener profiles, sources and ecological risks in the Guanlan River during both the dry season (DS) and the wet season (WS). The concentration of Σ9PBDE ranged from 58.40 to 186.35â¯ng/L with an average of 115.72â¯ng/L in the DS, and from 8.20 to 37.80â¯ng/L with an average of 22.15â¯ng/L in the WS. Meanwhile, the concentration of Σ16PAHs was ranged from 121.80 to 8371.70â¯ng/L with an average of 3271.18â¯ng/L in the DS and from 1.85 to 7124.25â¯ng/L with an average of 908.11â¯ng/L in the WS. The concentrations of PBDEs and PAHs in the DS were significantly higher than those in the WS, probably due to the dilution of the river during the rainy season. Moreover, the spatial distribution of pollutants revealed decreasing trend in the concentration from upstream to downstream and almost identical pattern was observed during both seasons. The source apportionment suggested that penta-BDE and to some extent octa-BDE commercial products were major sources of PBDEs in the study area. However, the sources of PAHs were mainly comprised of fossil fuels and biomass burning, followed by the petroleum products and their mixtures. The results of the ecological risk assessment indicated PBDEs contamination posed high ecological risks, while PAHs exhibited low or no ecological risks in the study area. Consistent with the environmental levels, the ecological risks of pollutants were relatively lower in the WS, compared to that in the DS. The results from this study would provide valuable baseline data and technical support for policy makers to protect the ecological environment of the Guanlan River.
Assuntos
Monitoramento Ambiental/métodos , Éteres Difenil Halogenados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Poluentes Químicos da Água/análise , China , Combustíveis Fósseis/análise , Sedimentos Geológicos/química , Petróleo/análise , Medição de Risco , Estações do Ano , Análise Espaço-Temporal , UrbanizaçãoRESUMO
This study investigated the occurrence, distribution, and potential sources of 34 pharmaceuticals and personal care products (PPCPs) in water, sediments, aquatic organisms (fish and shellfish), and fish feeds from the mariculture areas of the Pearl River Delta (PRD). The health risk presented by this class of compounds was also assessed in relation to their intake via seafood consumption. Of the 34 PPCPs, a total of 9, 21, 14, and 28 PPCPs were detected in water, sediments, fish feeds, and aquatic organisms, respectively. Trimethoprim, norfloxacin, ofloxacin, and spectinomycin were detected in all matrices. The levels of PPCPs in water and sediment samples were relatively low. Spectinomycin, paracetamol, ciprofloxacin, norfloxacin, and ibuprofen were the most frequently detected PPCPs in feeds. Ibuprofen and ketoprofen were widely detected in aquatic organisms, with average concentrations of 562 and 267â¯ng/g wet weight, respectively. The residual levels of PPCPs in shellfish such as ME (mussel, Mytilus edulis) and OS (oyster, Ostrea gigas) were significantly higher (pâ¯<â¯0.05) than those in other species including CA (topmouth culter, Culter alburnus) and EO (orbfish, Ephippus orbis). Correlation analysis indicated that the medicated feeds were a potential source of PPCPs in the mariculture areas of the PRD, but other anthropogenic sources should not be ignored. Based on maximum residue limits and acceptable daily intake, the health risks presented to humans via seafood consumption are negligible. However, as multiple antibiotics were frequently detected in the mariculture environment, aquatic organisms, and feeds, the induction and dissemination of antimicrobial resistance associated with antibiotic usage in aquaculture would be of great concern. It is necessary to establish a centralized management system and control the use of veterinary drugs in mariculture to protect the aquaculture environment and ensure the safety of seafood.
Assuntos
Ração Animal/análise , Organismos Aquáticos/metabolismo , Cosméticos/análise , Monitoramento Ambiental , Sedimentos Geológicos/análise , Preparações Farmacêuticas/análise , Medição de Risco , Animais , Aquicultura , Estuários , Peixes , HumanosRESUMO
BACKGROUND: Human studies indicate that phthalate exposure is associated with adverse male reproductive health, and this association may be modified by genetic polymorphisms. OBJECTIVES: We investigated whether apoptosis-related gene polymorphisms modified the associations of phthalate exposure with spermatozoa apoptosis and semen quality. METHODS: In this Chinese population who sought for semen examination in an infertility clinic, we measured 8 phthalate metabolites in two urine samples to assess the individual's exposure levels. Apoptosis-related gene (Fas, FasL, and caspase3) polymorphisms were performed by real-time PCR. Spermatozoa apoptosis and semen quality parameters were evaluated by Annexin V/PI assay and computer-aided semen analysis, respectively. RESULTS: We found that Fas rs2234767, FasL rs763110, and caspase3 rs12108497 gene polymorphisms significantly modified the associations between urinary phthalate metabolites and spermatozoa apoptosis. For example, urinary monobutyl phthalate (MBP) associated with an increased percentage of Annexin V+/PI- spermatozoa of 25.11% (95% CI: 4.08%, 50.53%) were only observed among men with CT/TT genotype of FasL rs763110. In addition, we found that caspase3 rs12108497 gene polymorphisms significantly modified the associations of urinary mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with decreased sperm concentration and sperm count (both p-values for interactions = 0.02). CONCLUSION: Our results provided the first evidence that apoptosis-related gene polymorphisms might contribute to the effects of phthalate exposure on male reproductive health.