Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884565

RESUMO

Amyloid-ß (Aß) peptides play a key role in Alzheimer's disease (AD), the most common type of dementia. In this study, a polysaccharide from Bletilla striata (BSP), with strong antioxidant and anti-inflammatory properties, was extracted using a low-temperature method and tested for its efficacy against AD, in vitro using N2a and BV-2 cells, and in vivo using an AD rat model. The characterization of the extracted BSP for its molecular structure and functional groups demonstrated the effectiveness of the modified method for retaining its bioactivity. In vitro, BSP reduced by 20% reactive oxygen species (ROS) levels in N2a cells (p = 0.0082) and the expression levels of inflammation-related genes by 3-fold TNF-α (p = 0.0048), 4-fold IL-6 (p = 0.0019), and 2.5-fold IL-10 (p = 0.0212) in BV-2 cells treated with Aß fibrils. In vivo, BSP recovered learning memory, ameliorated morphological damage in the hippocampus and cortex, and reduced the expression of the ß-secretase protein in AlCl3-induced AD rats. Collectively, these findings demonstrated the efficacy of BSP for preventing and alleviating the effects of AD.


Assuntos
Cloreto de Alumínio/toxicidade , Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Temperatura Baixa , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Animais , Feminino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
2.
Biomater Res ; 27(1): 98, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798744

RESUMO

BACKGROUND: Alzheimer's disease is a neurodegenerative disorder, and Aß aggregation is considered to be the central process implicated in its pathogenesis. Current treatments are faced by challenges such as serious side effects and reduced drug bioavailability. In this study, we developed a drug delivery system for intramuscular injection that uses cellular activity to achieve constant and long-term drug release. METHODS: Synthesized mesoporous hydroxyapatite (SHAP) was prepared via co-precipitation, and hydrophobic surface modification using stearic acid was then used to load clenbuterol by physical absorption, thus creating the drug delivery system. Clenbuterol release was achieved through cellular activity, with macrophage uptake triggering lysosome/endosome disruption, cytoplasmic release, extracellular exocytosis, and subsequent systemic circulation. RESULTS: We found that clenbuterol-loaded SHAP enabled sustained release for more than 2 weeks and effectively modulated inflammation, reduced Aß oligomer-induced toxicity, and prevented Aß aggregation. CONCLUSIONS: Our findings suggest that treatment with clenbuterol loaded in this SHAP delivery system could be a promising strategy for treating Alzheimer's disease.

3.
Bioeng Transl Med ; 8(5): e10382, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693067

RESUMO

Obesity is the most common health concern all over the world. However, till now, there is no promising way to manage obesity or body-weight control. The aim of the study is to develop an edible gel as a health supplement that temporarily attaches to the mucus of the intestines, forming an absorption barrier to block the nutrients. We modify the alginate with the thiol group as thiolated alginate (TA) that may stay on the mucosa layer for a much longer time to reduce nutrient absorption. In this study, the TA is synthesized successfully and proved a good mucosal adhesion to serve as a barrier for nutrient absorption both in vitro and in vivo. The results of in vivo imaging system (IVIS) show that the synthesized TA can be exiled from the gastrointestinal tract within 24 h. The animal study shows that the TA by daily oral administration can effectively reduce body weight and fat deposition. The biosafety is evaluated in vitro at the cellular level, based on ISO-10993, and further checked by animal study. We do believe that the TA could have a greater potential to be developed into a safe health supplement to manage obesity and for body-weight control.

4.
Bioeng Transl Med ; 8(1): e10346, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684074

RESUMO

Urological chronic pelvic pain syndrome (UCPPS) manifests as pelvic pain with frequent urination and has a 10% prevalence rate without effective therapy. Nanoceria (cerium oxide nanoparticles [CNPs]) were synthesized in this study to achieve potential long-term pain relief, using a commonly used UCPPS mouse model with cyclophosphamide-induced cystitis. Transcriptome sequencing analysis revealed that serpin family B member 2 (SerpinB2) was the most upregulated marker in mouse bladder, and SerpinB2 was downregulated with CNP pretreatment. The transcriptome sequencing analysis results agreed with quantitative polymerase chain reaction and western blot analysis results for the expression of related mRNAs and proteins. Analysis of Gene Expression Omnibus (GEO) datasets revealed that SerpinB2 was a differentially upregulated gene in human UCPPS. In vitro SerpinB2 knockdown downregulated proinflammatory chemokine expression (chemokine receptor CXCR3 and C-X-C motif chemokine ligand 10) upon treatment with 4-hydroperoxycyclophosphamide. In conclusion, CNP pretreatment may prevent the development of UCPPS, and reactive oxygen species (ROS) scavenging and SerpinB2 downregulation may modulate the immune response in UCPPS.

5.
Bioeng Transl Med ; 8(4): e10431, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476067

RESUMO

Osteoarthritis (OA) of the knee is characterized by progressive deterioration and loss of articular cartilage with associatedstructural and performance changes in the entire joint, and current treatments for OA only aim to relieve symptoms, rather than to prevent or reverse disease progression. Recently, treatments targeting "early osteoarthritis" (EOA) have attracted attention. However, during EOA stage, chondrocytes may change behaviors to express pro-inflammatory cytokines and free radicals, which would cause detrimental effects to the synovial cavity and further cartilage wear. In this study, we combined resveratrol (Res) and Bletilla striata polysaccharide (BSP) as anti-inflammatories and antioxidants to diffuse free radicals and to alleviate inflammation from the synovial cavity both short term and long term. The current study introduced a new method for harvesting BSP from as-received Bletilla striata to achieve high yields, shortened extraction times, and maintained structure/functions. In addition, it combined Res and home-extracted BSP (Res-BSP) to alleviate oxidative stress and inflammation in a Lipopolysaccharide (LPS)-induced OA model. The gene expressions of inflammatory genes iNOs, IL-1ß, IL-6, and MMP-13 were upregulated 5.7-fold, 6.5-fold, 8.6-fold, and 4.5-fold, respectively on OA-like chondrocytes and the gene expressions were significantly downregulated to 3.3-fold, 2.1-fold, 4.9-fold, and 0.1-fold, respectively, once OA-like chondrocytes were treated with Res-BSP (p < 0.05, compared with OA-like chondrocytes). The gene expressions of chondrogenic genes TGFß1, SOX9, and type II collagen were downregulated by 0.8-fold, 2.2-fold, and 0.8-fold, respectively, based on the control group as a baseline. While it was significantly upregulated by 3.4-fold, 0.32-fold, and 0.4-fold, respectively, once OA-like chondrocytes were treated with Res-BSP. (p < 0.05, compared with OA-like chondrocytes). Finally, we elucidated the role of Res-BSP in EOA in suppressing COX-2 and activating p-Smad 2/3 and p-Erk1/2. We believe that the combination of Res and BSP has great potential as an alternative therapeutic strategy for EOA treatment in future.

6.
Antioxidants (Basel) ; 11(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35453412

RESUMO

In Alzheimer's disease (AD), the most common cause of dementia, patients generally forget to take pills or skip medication due to side effects, affecting the treatment efficacy. In this study, we combined a poly(lactic-co-glycolic acid), (PLGA)-poly(ethylene glycol), and (PEG)-PLGA thermo-sensitive hydrogel with curcumin (PGC) to deliver an intramuscular injection that could continuously release curcumin and maintain it at a constant level in blood to prevent AD development or progression. We evaluated the drug release profile and cytotoxicity of PGC and its effects on AD pathology through in vitro and in vivo studies and on cognitive function through an aluminum-chloride-induced AD rat model. In the in vitro study, PGC exhibited a lack of cytotoxicity, excellent anti-inflammatory and antioxidant properties, and microglial modulation. In the Morris water maze test, the PGC injection-administered AD rats presented well-focused searching behavior with the shortest swimming path and longest retention times in the quadrant where the platform was initially located. Furthermore, PGC reduced amyloid-beta aggregation and deposition and significantly increased hippocampal activity. This study demonstrated that intramuscular PGC injection can effectively prevent AD development or progression in rats without inducing toxicity; therefore, this strategy could help overcome the present challenges in AD management in humans.

7.
Bioeng Transl Med ; 7(2): e10267, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600649

RESUMO

Menopausal syndrome includes the symptoms that most women experience owing to hormone changes after menopause. Although hormone replacement therapy is a common treatment for menopausal syndrome, there are still many side effects and challenges hindering research. In this study, thioglycolic acid (TGA)-immobilized chitosan mucoadhesive gel was synthesized by a new method of low concentration of 1,4-butanediol diglycidyl ether (BDDE) would encapsulate di(2-ethylhexyl) phthalate (DEHP) as an alternative hormone replacement therapy for menopausal syndrome. The efficacies of the DEHP-containing TGA-chitosan gel (CT-D) were confirmed and evaluated by materials characterization and in vitro study. Results showed that CT-D was not cytotoxic and had better mucoadhesive ability than chitosan. The animal model was constructed 1 month after bilateral ovariectomy in SD rats. CT-D was administered intravaginally every 3 days. Bodyweight, wet weight of the uterus and vagina, vaginal smears, histology, blood element analysis, and serological analysis was used to assess the ability of the material to relieve menopausal syndrome. The results indicated that the combination of the sustained release of DEHP and mucoadhesive TGA-immobilized chitosan allows the developed CT-D to relieve the menopausal syndrome through low concentrations of DEHP, which falls in the safety level of the tolerable daily intake of DEHP.

8.
Mater Today Bio ; 15: 100266, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35517579

RESUMO

Several studies have focused on using cell carriers to solve the problem of mesenchymal stem cell expansion on regenerative medicine. However, the disadvantages of using prolonged enzymatic treatment and low cell harvest efficiency still trouble researchers. In this study, PNIPAAm-immobilized gelatin microspheres (abbreviated as GNMS) were synthesized using a simple power-driven flow-focusing microinjection system. The developed thermosensitive GNMS can allow easier harvesting of cells from the microspheres, requiring only 10 â€‹min of low-temperature treatment and 5 â€‹min of trypsin treatment. The developed GNMS was characterized by Fourier-transform infrared spectroscopy, optical microscopy, and scanning electron microscopy. Further, live/dead staining, F-actin staining, and PrestoBlue cell viability assays were used to evaluate cytotoxicity, cell morphology, cell proliferation, and harvest efficiency. The gene expression of stem cell markers was determined by real-time quantitative PCR (Q-PCR) analysis to investigate the stemness and phenotypic changes in Wharton's jelly-derived mesenchymal stem cells. The results showed that the engineered cell-laden thermosensitive GNMS could significantly increase the cell harvest rate with over 99% cell survival rate and no change in the cell phenotype. Thus, the described strategy GNMS could be the suitable 3D cell carriers in the therapeutic application and opens new avenues for regenerative medicine.

9.
Cell Transplant ; 31: 9636897221106995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36002988

RESUMO

The global population of individuals afflicted with diabetes mellitus has been increasing year by year, and this disease poses a serious threat to human health as well as the economies worldwide. Pancreatic or islet transplantations provide one of the most effective and long-term therapies available to treat diabetes, but the scarcity and quality of pancreatic islets limit their use in treatments. Here, we report the development of a one-step, monolayer culture, and chemical-based protocol that efficiently mediates the differentiation of human adipose-derived stem cells (hADSCs) into insulin-producing cells (IPCs). Our data indicate that hADSCs in monolayer culture that are allowed to differentiate into IPCs are superior to those in suspension cultures with respect to insulin secretion capacity (213-fold increase), cell viability (93.5 ± 3.27% vs. 41.67 ± 13.17%), and response to glucose stimulation. Moreover, the expression of genes associated with pancreatic lineage specification, such as PDX1, ISL1, and INS (encoding insulin), were expressed at significantly higher levels during our differentiation protocol (6-fold for PDX1 and ISL1, 11.5-fold for INS). Importantly, in vivo studies demonstrated that transplantation with IPCs significantly mitigated hyperglycemia in streptozotocin-induced diabetic rats. Our results indicate that this one-step, rapid protocol increases the efficiency of IPC generation and that the chemical-based approach for IPC induction may reduce safety concerns associated with the use of IPCs for clinical applications, thereby providing a safe and effective cell-based treatment for diabetes.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Células Secretoras de Insulina , Animais , Diferenciação Celular/fisiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Humanos , Hiperglicemia/terapia , Insulina/metabolismo , Ratos , Células-Tronco , Estreptozocina
10.
Bioact Mater ; 6(6): 1699-1710, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33313449

RESUMO

Many technologies have been developed for breast reconstruction after lumpectomy. Although the technologies achieved promising success in clinical, there are still many shortages hanging over and trouble the researchers. Tissue engineering technology was introduced to plastic surgery that gave a light to lumpectomy patients in breast reconstruction. The unexpected absorption rate, resulting from limited vascularization and low cell survival rate, is a major factor that leads to unsatisfactory results for the previous studies in our lab. In the study, the laminin-modified alginate synthesized by a new method of low concertation of sodium periodate would be mixed with ADSCs and Rg1 in the medium; and then sprayed into a calcium chloride (CaCl2) solution to prepare into microsphere (abbreviated as ADSC-G-LAMS) by bio-electrospray with a power syringe for the mass production and smaller bead size. The developed ADSC-G-LAMS microspheres had the diameter of 232 ± 42 µm. Sustained-release of the Rg1 retained its biological activity. WST-1, live/dead staining, and chromosome aberration assay were evaluated to confirm the safety of the microspheres. In in vivo study, ADSC-G-LAMS microspheres combined with autologous adipocytes were transplanted into the dorsum of rats by subcutaneous injection. The efficacy was investigated by H&E and immunofluorescence staining. The results showed that the bioactive ADSC-G-LAMS microspheres could integrate well into the host adipose tissue with an adequate rate of angiogenesis by constantly releasing Rg1 to enhance the ADSC or adipocyte survival rate to join tissue growth and repair with adipogenesis for breast reconstruction after lumpectomy.

11.
Antioxidants (Basel) ; 10(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804703

RESUMO

Oxidative stress has been suggested as an important factor in the progress of sarcopenia. The current treatments for sarcopenia have the disadvantages of insufficient effect or daily administration. Therefore, an alternative for effective, safety and long-term treatment may be a solution for unmet needs. Bletilla striata polysaccharide has been reported to have anti-oxidative and anti-inflammatory properties. In this study, we used Bletilla striata polysaccharide (BSP) combined with hydroxyapatite, a carrier. We hypothesized that the resulting combination (BSP-HAP) is a good formula for the controlled release of BSP via intramuscular (IM) administration, so as to prevent the worsening of presarcopenia or even recover from the early stage of the illness. In this research, BSP-HAP was synthesized by a modified low temperature co-precipitation process that would be beneficial for BSP loading. By conducting DCFDA, WST-1 and the Live/Dead assay, BSP-HAP is shown to be a biocompatible material which may release BSP by cells through the endocytosis pathway. Animal studies revealed that the rats treated with BSP-HAP could effectively recover muscle endurance, grip strength or fat/lean mass ratio from lipopolysaccharide (LPS)-induced sarcopenia. This study shows BSP delivered by BSP-HAP system has potential for application in the treatment and prevention of sarcopenia in the future.

12.
Antioxidants (Basel) ; 10(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923718

RESUMO

Oxidative stress and later-induced chronic inflammation have been reported to play an important role on the progression of sarcopenia. Current treatments for sarcopenia are mainly administered to patients whom sarcopenia already developed. However, there has been no promising results shown in therapy. Therefore, the development of therapeutic and preventive strategies against sarcopenia would be necessary. Curcumin is a traditional medicine that possesses anti-inflammatory and antioxidative properties. In the present study, hydroxyapatite was subjected to hydrophobic surface modifications for curcumin loading (Cur-SHAP). It was, subsequently, utilized for delivery to the patient's body via intramuscular injection in order to achieve constant release for more than 2 weeks, preventing the progression of the sarcopenia or even leading to recovery from the early stage of the illness. According to the results of WST-1, LIVE/DEAD, DCFDA, and gene expression assays, Cur-SHAP exhibited good biocompatibility and showed great antioxidant/anti-inflammatory effects through the endocytic pathway. The results of the animal studies showed that the muscle endurance, grip strength, and fat/lean mass ratio were all improved in Cur-SHAP-treated rats from LPS-induced sarcopenia. In summary, we successfully synthesized hydrophobic surface modification hydroxyapatite for curcumin loading (Cur-SHAP) and drug delivery via the IM route. The LPS-induced sarcopenia rats were able to recover from disease after the Cur-SHAP treatment.

13.
ACS Biomater Sci Eng ; 6(5): 2570-2577, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463278

RESUMO

The human corneal endothelium has limited regeneration capacity. Several methods have been developed in an attempt to repair it. Descemet stripping automated endothelial keratoplasty (DSAEK) is commonly performed on patients with endothelial dysfunction. However, donor demand far exceeds donor supply. Here, we prepared fish-scale collagen membrane (FSCM) and seeded it with CECs in preparation for corneal endothelial transplantation. The fish scales were decellularized, decalcified, and curved. The FSCM was inspected by fluorescence microscopy, SEM, and TGA to validate decellularization, microstructure, and decalcification, respectively. The cytotoxicity of FSCM and the viability of the cells in contact with it were evaluated by LDH and WST-1, respectively. CEC tight junctions and ZO-1 structure were observed by SEM and confocal microscopy. FSCM seeded with CECs were implanted to rabbit anterior chambers to evaluate host tissue reactions to it. FSCM biocompatibility and durability were also assessed. The results showed that FSCM has excellent transparency, adequate water content, and good biocompatibility. The cultivated CECs mounted on the FSCM were similar to normal CECs in vivo. The FSCM plus CECs developed here have high potential efficacy for endothelial keratoplasty transplantation.


Assuntos
Transplante de Córnea , Células Endoteliais , Animais , Colágeno , Endotélio Corneano , Humanos , Coelhos , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA