Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.396
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(1): 41-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036767

RESUMO

Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.1.351) or PR8 influenza. Protection was first evident between 14 and 21 d post-vaccination and lasted ∼3 months. Notably, BCG induced a biphasic innate response and robust antigen-specific type 1 helper T cell (TH1 cell) responses in the lungs. MyD88 signaling was essential for innate and TH1 cell responses, and protection against SARS-CoV-2. Depletion of CD4+ T cells or interferon (IFN)-γ activity before infection obliterated innate activation and protection. Single-cell and spatial transcriptomics revealed CD4-dependent expression of IFN-stimulated genes in lung myeloid and epithelial cells. Notably, BCG also induced protection against weight loss after mouse-adapted SARS-CoV-2 BA.5, SARS-CoV and SHC014 coronavirus infections. Thus, BCG elicits integrated organ immunity, where CD4+ T cells feed back on tissue myeloid and epithelial cells to imprint prolonged and broad innate antiviral resistance.


Assuntos
Imunidade Adaptativa , Vacina BCG , Animais , Camundongos , Humanos , Retroalimentação , Vacinação , Redução de Peso , Antivirais , Imunidade Inata
2.
Cell ; 184(5): 1156-1170.e14, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33539781

RESUMO

Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.


Assuntos
Produtos Agrícolas/genética , Domesticação , Oryza/genética , Sistemas CRISPR-Cas , Segurança Alimentar , Edição de Genes , Variação Genética , Genoma de Planta , Oryza/classificação , Poliploidia
3.
Nature ; 632(8026): 782-787, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39143208

RESUMO

Hot-carrier transistors are a class of devices that leverage the excess kinetic energy of carriers. Unlike regular transistors, which rely on steady-state carrier transport, hot-carrier transistors modulate carriers to high-energy states, resulting in enhanced device speed and functionality. These characteristics are essential for applications that demand rapid switching and high-frequency operations, such as advanced telecommunications and cutting-edge computing technologies1-5. However, the traditional mechanisms of hot-carrier generation are either carrier injection6-11 or acceleration12,13, which limit device performance in terms of power consumption and negative differential resistance14-17. Mixed-dimensional devices, which combine bulk and low-dimensional materials, can offer different mechanisms for hot-carrier generation by leveraging the diverse potential barriers formed by energy-band combinations18-21. Here we report a hot-emitter transistor based on double mixed-dimensional graphene/germanium Schottky junctions that uses stimulated emission of heated carriers to achieve a subthreshold swing lower than 1 millivolt per decade beyond the Boltzmann limit and a negative differential resistance with a peak-to-valley current ratio greater than 100 at room temperature. Multi-valued logic with a high inverter gain and reconfigurable logic states are further demonstrated. This work reports a multifunctional hot-emitter transistor with significant potential for low-power and negative-differential-resistance applications, marking a promising advancement for the post-Moore era.

4.
Nature ; 615(7950): 105-110, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36697830

RESUMO

Indirect development with an intermediate larva exists in all major animal lineages1, which makes larvae central to most scenarios of animal evolution2-11. Yet how larvae evolved remains disputed. Here we show that temporal shifts (that is, heterochronies) in trunk formation underpin the diversification of larvae and bilaterian life cycles. We performed chromosome-scale genome sequencing in the annelid Owenia fusiformis with transcriptomic and epigenomic profiling during the life cycles of this and two other annelids. We found that trunk development is deferred to pre-metamorphic stages in the feeding larva of O. fusiformis but starts after gastrulation in the non-feeding larva with gradual metamorphosis of Capitella teleta and the direct developing embryo of Dimorphilus gyrociliatus. Accordingly, the embryos of O. fusiformis develop first into an enlarged anterior domain that forms larval tissues and the adult head12. Notably, this also occurs in the so-called 'head larvae' of other bilaterians13-17, with which the O. fusiformis larva shows extensive transcriptomic similarities. Together, our findings suggest that the temporal decoupling of head and trunk formation, as maximally observed in head larvae, facilitated larval evolution in Bilateria. This diverges from prevailing scenarios that propose either co-option9,10 or innovation11 of gene regulatory programmes to explain larva and adult origins.


Assuntos
Genômica , Estágios do Ciclo de Vida , Poliquetos , Animais , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Poliquetos/anatomia & histologia , Poliquetos/embriologia , Poliquetos/genética , Poliquetos/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Epigenômica , Cabeça/anatomia & histologia , Cabeça/embriologia , Cabeça/crescimento & desenvolvimento
5.
EMBO J ; 43(9): 1690-1721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38378891

RESUMO

Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.


Assuntos
Aedes , Zika virus , Animais , Aedes/virologia , Aedes/metabolismo , Feminino , Zika virus/fisiologia , Camundongos , Vírus da Dengue/fisiologia , Proteínas e Peptídeos Salivares/metabolismo , Mosquitos Vetores/virologia , Proteínas de Insetos/metabolismo , Células Mieloides/virologia , Células Mieloides/metabolismo , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Dengue/transmissão , Dengue/virologia , Dengue/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética
6.
Nature ; 590(7847): 600-605, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33408412

RESUMO

The intensive application of inorganic nitrogen underlies marked increases in crop production, but imposes detrimental effects on ecosystems1,2: it is therefore crucial for future sustainable agriculture to improve the nitrogen-use efficiency of crop plants. Here we report the genetic basis of nitrogen-use efficiency associated with adaptation to local soils in rice (Oryza sativa L.). Using a panel of diverse rice germplasm collected from different ecogeographical regions, we performed a genome-wide association study on the tillering response to nitrogen-the trait that is most closely correlated with nitrogen-use efficiency in rice-and identified OsTCP19 as a modulator of this tillering response through its transcriptional response to nitrogen and its targeting to the tiller-promoting gene DWARF AND LOW-TILLERING (DLT)3,4. A 29-bp insertion and/or deletion in the OsTCP19 promoter confers a differential transcriptional response and variation in the tillering response to nitrogen among rice varieties. The allele of OsTCP19 associated with a high tillering response to nitrogen is prevalent in wild rice populations, but has largely been lost in modern cultivars: this loss correlates with increased local soil nitrogen content, which suggests that it might have contributed to geographical adaptation in rice. Introgression of the allele associated with a high tillering response into modern rice cultivars boosts grain yield and nitrogen-use efficiency under low or moderate levels of nitrogen, which demonstrates substantial potential for rice breeding and the amelioration of negative environment effects by reducing the application of nitrogen to crops.


Assuntos
Adaptação Fisiológica/genética , Produtos Agrícolas/genética , Nitrogênio/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Solo/química , Alelos , Produtos Agrícolas/metabolismo , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Introgressão Genética , Variação Genética , Estudo de Associação Genômica Ampla , Mutação INDEL , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética
7.
Proc Natl Acad Sci U S A ; 121(39): e2406479121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284050

RESUMO

Parkinson's disease (PD) is typically a sporadic late-onset disorder, which has made it difficult to model in mice. Several transgenic mouse models bearing mutations in SNCA, which encodes alpha-Synuclein (α-Syn), have been made, but these lines do not express SNCA in a physiologically accurate spatiotemporal pattern, which limits the ability of the mice to recapitulate the features of human PD. Here, we generated knock-in mice bearing the G51D SNCA mutation. After establishing that their motor symptoms begin at 9 mo of age, we then sought earlier pathologies. We assessed the phosphorylation at Serine 129 of α-Syn in different tissues and detected phospho-α-Syn in the olfactory bulb and enteric nervous system at 3 mo of age. Olfactory deficit and impaired gut transit followed at 6 mo, preceding motor symptoms. The SncaG51D mice thus parallel the progression of human PD and will enable us to study PD pathogenesis and test future therapies.


Assuntos
Modelos Animais de Doenças , Técnicas de Introdução de Genes , Doença de Parkinson , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Doença de Parkinson/patologia , Camundongos Transgênicos , Fosforilação , Transtornos do Olfato/genética , Transtornos do Olfato/metabolismo , Transtornos do Olfato/fisiopatologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/fisiopatologia , Humanos , Masculino
8.
Nucleic Acids Res ; 52(6): e33, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375921

RESUMO

The bendability of genomic DNA, which measures the DNA looping rate, is crucial for numerous biological processes of DNA. Recently, an advanced high-throughput technique known as 'loop-seq' has made it possible to measure the inherent cyclizability of DNA fragments. However, quantifying the bendability of large-scale DNA is costly, laborious, and time-consuming. To close the gap between rapidly evolving large language models and expanding genomic sequence information, and to elucidate the DNA bendability's impact on critical regulatory sequence motifs such as super-enhancers in the human genome, we introduce an innovative computational model, named MIXBend, to forecast the DNA bendability utilizing both nucleotide sequences and physicochemical properties. In MIXBend, a pre-trained language model DNABERT and convolutional neural network with attention mechanism are utilized to construct both sequence- and physicochemical-based extractors for the sophisticated refinement of DNA sequence representations. These bimodal DNA representations are then fed to a k-mer sequence-physicochemistry matching module to minimize the semantic gap between each modality. Lastly, a self-attention fusion layer is employed for the prediction of DNA bendability. In conclusion, the experimental results validate MIXBend's superior performance relative to other state-of-the-art methods. Additionally, MIXBend reveals both novel and known motifs from the yeast. Moreover, MIXBend discovers significant bendability fluctuations within super-enhancer regions and transcription factors binding sites in the human genome.


Assuntos
Biologia Computacional , DNA , Humanos , DNA/genética , DNA/química , Genômica , Redes Neurais de Computação , Ligação Proteica , Saccharomyces cerevisiae/genética , Biologia Computacional/métodos , Genoma Humano , Sequência de Bases , Fenômenos Químicos
9.
Genome Res ; 32(10): 1892-1905, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36100434

RESUMO

Emerging spatial profiling technology has enabled high-plex molecular profiling in biological tissues, preserving the spatial and morphological context of gene expression. Here, we describe expanding the chemistry for the Digital Spatial Profiling platform to quantify whole transcriptomes in human and mouse tissues using a wide range of spatial profiling strategies and sample types. We designed multiplexed in situ hybridization probes targeting the protein-coding genes of the human and mouse transcriptomes, referred to as the human or mouse Whole Transcriptome Atlas (WTA). Human and mouse WTAs were validated in cell lines for concordance with orthogonal gene expression profiling methods in regions ranging from ∼10-500 cells. By benchmarking against bulk RNA-seq and fluorescence in situ hybridization, we show robust transcript detection down to ∼100 transcripts per region. To assess the performance of WTA across tissue and sample types, we applied WTA to biological questions in cancer, molecular pathology, and developmental biology. Spatial profiling with WTA detected expected gene expression differences between tumor and tumor microenvironment, identified disease-specific gene expression heterogeneity in histological structures of the human kidney, and comprehensively mapped transcriptional programs in anatomical substructures of nine organs in the developing mouse embryo. Digital Spatial Profiling technology with the WTA assays provides a flexible method for spatial whole transcriptome profiling applicable to diverse tissue types and biological contexts.


Assuntos
Perfilação da Expressão Gênica , Neoplasias , Humanos , Animais , Camundongos , Hibridização in Situ Fluorescente/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Microambiente Tumoral
10.
Am J Pathol ; 194(7): 1185-1196, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38548270

RESUMO

Acute lung injury (ALI) is a devastating clinical syndrome caused by different factors, with high morbidity and mortality. Lung injury and inflammation caused by lipopolysaccharide (LPS) can be modulated by NLRP3 inflammasome activation, yet its exact function within the airway epithelium is still unknown. Meanwhile, glucose transporter protein 1 (GLUT1) contributes to a number of inflammatory illnesses, including ALI. The present study aimed to assess GLUT1's function in NLRP3 inflammasome activation of airway epithelium in LPS-induced acute lung injury. BALB/c mice and BEAS-2B cells were exposed to LPS (5 mg/kg and 200 µg/mL, respectively), with or without GLUT1 antagonists (WZB117 or BAY876). LPS up-regulated pulmonary expression of NLRP3 and GLUT1 in mice, which could be blocked by WZB117 or BAY876. Pharmacological inhibition of GLUT1 in vivo significantly attenuated lung tissue damage, neutrophil accumulation, and proinflammatory factors release (TNF-α, IL-6, and IL-1ß) in LPS-exposed mice. Meanwhile, the activation markers of NLRP3 inflammasome (ASC, caspase-1, IL-1ß, and IL-18) induced by LPS were also suppressed. In cultured BEAS-2B cells, LPS induced an increase in GLUT1 expression and triggered activation of the NLRP3 inflammasome, both of which were inhibited by GLUT1 antagonists. These results illustrate that GLUT1 participates in LPS-induced ALI and promotes the activation of the NLRP3 inflammasome in airway epithelial cells.


Assuntos
Lesão Pulmonar Aguda , Transportador de Glucose Tipo 1 , Inflamassomos , Lipopolissacarídeos , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Inflamassomos/metabolismo , Camundongos , Transportador de Glucose Tipo 1/metabolismo , Humanos , Masculino , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
11.
Hepatology ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39397357

RESUMO

BACKGROUND AND AIMS: The chemical carcinogen diethylnitrosamine (DEN) is often used to induce HCC in mice. Curiously, several labs have reported that the removal of oncoproteins from hepatocytes exacerbated DEN-induced HCC, with mechanisms unknown. This study aimed at deciphering molecular mechanisms underlying the tumor suppressive effect of oncoproteins. APPROACH AND RESULTS: We generated mutant mouse lines with hepatocyte-specific deletions of Met, Ptpn11/Shp2, Ikkß, or Ctnnb1/ß-catenin and assessed DEN-induced tumorigenesis in the wild-type and mutant mice. To systematically examine genetic and molecular signaling alterations, we performed whole exome and RNA-sequencing on liver samples collected at the pre-cancer and established cancer stages. Although the mutational profiles of DEN-induced tumors were barely different in wild-type and mutant mice, oncoprotein ablation increased DEN-induced mutational burdens, especially in Shp2-deficient tumors. RNA-sequencing revealed multiple changes in signaling pathways, in particular, upregulated epithelial-mesenchymal transition, cell migration, and tumor metastasis, as well as downregulated small molecule metabolism that was affected by oncoprotein ablation. We identified key molecules and pathways that are associated with hepatic innate immunity and implicated in liver tumorigenesis. In addition, we unveiled markedly changed expression of a few miRNAs in the human HCC database. CONCLUSIONS: The aggravation of DEN-induced HCC progression seen on oncoprotein ablation could be caused by common and distinct genomic and signaling alterations. This study reveals a new level of complexity in hepatocarcinogenesis and elucidates molecular mechanisms underlying tumor evolution and recurrence.

12.
Plant Physiol ; 195(4): 2551-2565, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38739546

RESUMO

Rhamnogalacturonan II (RG-II) is a structurally complex and conserved domain of the pectin present in the primary cell walls of vascular plants. Borate cross-linking of RG-II is required for plants to grow and develop normally. Mutations that alter RG-II structure also affect cross-linking and are lethal or severely impair growth. Thus, few genes involved in RG-II synthesis have been identified. Here, we developed a method to generate viable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in callus tissue via CRISPR/Cas9-mediated gene editing. We combined this with a candidate gene approach to characterize the male gametophyte defective 2 (MGP2) gene that encodes a putative family GT29 glycosyltransferase. Plants homozygous for this mutation do not survive. We showed that in the callus mutant cell walls, RG-II does not cross-link normally because it lacks 3-deoxy-D-manno-octulosonic acid (Kdo) and thus cannot form the α-L-Rhap-(1→5)-α-D-kdop-(1→sidechain). We suggest that MGP2 encodes an inverting RG-II CMP-ß-Kdo transferase (RCKT1). Our discovery provides further insight into the role of sidechains in RG-II dimerization. Our method also provides a viable strategy for further identifying proteins involved in the biosynthesis of RG-II.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Edição de Genes , Glicosiltransferases , Pectinas , Arabidopsis/genética , Arabidopsis/metabolismo , Pectinas/metabolismo , Edição de Genes/métodos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Parede Celular/metabolismo , Parede Celular/genética , Sistemas CRISPR-Cas , Mutação/genética
13.
Plant Cell ; 34(5): 1822-1843, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35171277

RESUMO

Deployment of broad-spectrum disease resistance against multiple pathogen species is an efficient way to control plant diseases. Here, we identify a Microtubule-associated C4HC3-type E3 Ligase (MEL) in both Nicotiana benthamiana and Oryza sativa, and show that it is able to integrate and initiate a series of host immune signaling, conferring broad-spectrum resistance to viral, fungal, and bacterial pathogens. We demonstrate that MEL forms homodimer through intermolecular disulfide bonds between its cysteine residues in the SWIM domain, and interacts with its substrate serine hydroxymethyltrasferase 1 (SHMT1) through the YφNL motif. Ubiquitin ligase activity, homodimerization and YφNL motif are indispensable for MEL to regulate plant immunity by mediating SHMT1 degradation through the 26S proteasome pathway. Our findings provide a fundamental basis for utilizing the MEL-SHMT1 module to generate broad-spectrum-resistant rice to global destructive pathogens including rice stripe virus, Magnaporthe oryzae, and Xanthomonas oryzae pv. oryzae.


Assuntos
Magnaporthe , Oryza , Xanthomonas , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Magnaporthe/fisiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Xanthomonas/fisiologia
14.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950877

RESUMO

Autism spectrum disorder (ASD) is characterized by etiological and phenotypic heterogeneity. Despite efforts to categorize ASD into subtypes, research on specific functional connectivity changes within ASD subgroups based on clinical presentations is limited. This study proposed a symptom-based clustering approach to identify subgroups of ASD based on multiple clinical rating scales and investigate their distinct Electroencephalogram (EEG) functional connectivity patterns. Eyes-opened resting-state EEG data were collected from 72 children with ASD and 63 typically developing (TD) children. A data-driven clustering approach based on Social Responsiveness Scales-Second Edition and Vinland-3 scores was used to identify subgroups. EEG functional connectivity and topological characteristics in four frequency bands were assessed. Two subgroups were identified: mild ASD (mASD, n = 37) and severe ASD (sASD, n = 35). Compared to TD, mASD showed increased functional connectivity in the beta band, while sASD exhibited decreased connectivity in the alpha band. Significant between-group differences in global and regional topological abnormalities were found in both alpha and beta bands. The proposed symptom-based clustering approach revealed the divergent functional connectivity patterns in the ASD subgroups that was not observed in typical ASD studies. Our study thus provides a new perspective to address the heterogeneity in ASD research.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Eletroencefalografia , Análise por Conglomerados , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico
15.
BMC Genomics ; 25(1): 605, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886635

RESUMO

BACKGROUND: Acer truncatum Bunge is an economic, ecological, oil, and medicinal tree, and its kernel oil is rich in nervonic acid. It is crucial to explore the transcriptional expression patterns of genes affecting fatty acid synthesis to improve the quality of Acer truncatum oil. RESULTS: This study used the seeds from high fatty acid strain YQC and those from low fatty acid strain Y38 as the test materials. Specifically, we performed a comparative transcriptome analysis of Y38 seeds and YQC to identify differentially expressed genes (DEGs) at two time points (seeds 30 days after the blooming period and 90 days after the blooming period). Compared with YQC_1 (YQC seeds at 30 days after the blooming period), a total of 3,618 DEGs were identified, including 2,333 up-regulated and 1,285 downregulated DEGs in Y38_1 (Y38 seeds at 30 days after blooming period). In the Y38_2 (Y38 seeds at 90 days after the blooming period) versus YQC_2 (YQC seeds at 90 days after the blooming period) comparison group, 9,340 genes were differentially expressed, including 5,422 up-regulated and 3,918 down-regulated genes. The number of DEGs in Y38 compared to YQC was significantly higher in the late stages of seed development. Gene functional enrichment analyses showed that the DEGs were mainly involved in the fatty acid biosynthesis pathway. And two fatty acid synthesis-related genes and seven nervonic acid synthesis-related genes were validated by qRT-PCR. CONCLUSIONS: This study provides a basis for further research on biosynthesizing fatty acids and nervonic acidnervonic acids in A. truncatum seeds.


Assuntos
Acer , Ácidos Graxos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sementes , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Acer/genética , Acer/metabolismo , Acer/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Ácidos Graxos Monoinsaturados
16.
Immunology ; 173(2): 408-421, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39016535

RESUMO

Thought of as a metastasis-associated gene, however, NME/NM23 nucleoside diphosphate kinase 4 (NME4) has rarely been described in the context of the tumour microenvironment. To understand the immunological implications of NME4 in oesophageal squamous cell carcinoma (ESCC), we used multiplex immunohistochemistry to analyse the clinicopathological and prognostic importance of NME4 expression. Then, after establishing a syngeneic tumour model with a C57BL/6 mouse strain that can recapitulate the tumour microenvironment of humans, we examined the immunological involvement of NME4 expression. To explore the underlying molecular mechanism, via quantitative proteomics and protein microarray screening, we investigated the potential signalling pathways involved. The clinicopathological and prognostic importance of NME4 expression is limited in ESCC patients. In vivo, single-cell RNA sequencing showed that NME4 strikingly prevented CD8+ T cells from infiltrating the tumour microenvironment in murine ESCC. Mechanistically, we mapped out the NFκB2-CCL5 axis that was negatively controlled by NME4 in the murine ESCC cell line AKR. Collectively, these data demonstrated that regulation of NFκB2-CCL5 axis by NME4 prevents CD8+ T cells infiltration in ESCC.


Assuntos
Linfócitos T CD8-Positivos , Quimiocina CCL5 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Linfócitos do Interstício Tumoral , Nucleosídeo NM23 Difosfato Quinases , Microambiente Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Nucleosídeo NM23 Difosfato Quinases/genética , Prognóstico , Transdução de Sinais , Microambiente Tumoral/imunologia
17.
Dev Genes Evol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980376

RESUMO

Folsomia candida is a tiny soil-living arthropod belonging to the Collembola, which is an outgroup to Insecta. It resembles insects as having a pair of antennae and three pairs of thorax legs, while it also possesses three abdominal appendages: a ventral tube located in the first abdominal segment (A1), a retinaculum in A3, and a furca in A4. Collembolan Ubx and AbdA specify abdominal appendages, but they are unable to repress appendage marker gene Dll. The genetic basis of collembolan appendage formation and the mechanisms by which Ubx and AbdA regulate Dll transcription and appendage development remains unknown. In this study, we analysed the developmental transcriptomes of F. candida and identified candidate appendage formation genes, including Ubx (FcUbx). The expression data revealed the dominance of Dll over Ubx during the embryonic 3.5 and 4.5 days, suggesting that Ubx is deficient in suppressing Dll at early appendage formation stages. Furthermore, via electrophoretic mobility shift assays and dual luciferase assays, we found that the binding and repression capacity of FcUbx on Drosophila Dll resembles those of the longest isoform of Drosophila Ubx (DmUbx_Ib), while the regulatory mechanism of the C-terminus of FcUbx on Dll repression is similar to that of the crustacean Artemia franciscana Ubx (AfUbx), demonstrating that the function of collembolan Ubx is intermediate between that of Insecta and Crustacea. In summary, our study provides novel insights into collembolan appendage formation and sheds light on the functional evolution of Ubx. Additionally, we propose a model that collembolan Ubx regulates abdominal segments in a context-specific manner.

18.
Anal Chem ; 96(1): 204-211, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38148285

RESUMO

There are many flow behaviors in solid tumors, including intravascular, bloodstream, and interstitial convection. Studies have shown that tumor interstitial fluid (TIF) is an important part of tumor microenvironment regulation and affects drug delivery and metabolism between tumor cells. Magnetic resonance imaging (MRI) is suitable for detecting the flow rates of liquids in tissues. Clinical phase contrast PC-MRI technology has been designed to observe the blood flow in large vessels such as arteries and veins; however, it is not sensitive enough to deal with slow flow velocity. Our previously developed vertical plane echo PC-MRI technology, the Velocity Mapping sequence, improved the signal-to-noise ratio (SNR) for measuring slow interstitial fluid rate. In this study, this sequence was used to determine the TIF flow rate in MDA-MB-231 human breast tumor cells used in BALB/c nude male mice. Two different sizes of contrast agents were intravenously injected, and the relationship between their distribution and the TIF flow rate was studied for the first time. Combining the results of clinical scanning showed that small-molecule DTPA-Gd (diethylenetriaminepentaacetic acid-gadolinium) was distributed immediately around the tumor margin after the injection. This distribution was positively correlated to the high flow rate area of the TIF before administration. In contrast, nanoparticles NaGdF4-PEG (polyethylene glycol) entered the tumor and reached their peak at 3 h. Drug distribution was negatively correlated with the high-flow-rate region of the TIF. Investigation of the TIF velocity can help better understand the fluid behavior in tumors and its role in drug delivery.


Assuntos
Neoplasias da Mama , Líquido Extracelular , Camundongos , Animais , Masculino , Humanos , Líquido Extracelular/metabolismo , Imageamento por Ressonância Magnética/métodos , Sistemas de Liberação de Medicamentos , Ácido Pentético , Neoplasias da Mama/metabolismo , Meios de Contraste/metabolismo , Gadolínio DTPA/metabolismo , Microambiente Tumoral
19.
Anal Chem ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412419

RESUMO

Quantitative analysis of cell-free RNA (cfRNA) in plasma sample can be used for screening, diagnosing, and prognosticating of multiple diseases. Here, we report a quantitative CRISPR/Cas digital imaging platform (qCasdip) for the detection of various cfRNAs, including circular RNAs and miRNAs, in clinical samples at the attomolar (aM) level without the need for preamplification. Digital counting strategy provides qCasdip quantitative ability with a linear detection range of 102-106 aM. Meanwhile, qCasdip demonstrated cfRNA profiling in clinical plasma samples, improving the diagnosis of breast cancer. These data highlight the potential of qCasdip to quantitatively assess the molecular patterns of specific cfRNA panels in plasma, thereby providing a novel liquid biopsy solution to enhance disease diagnosis.

20.
BMC Plant Biol ; 24(1): 1023, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39468440

RESUMO

BACKGROUND: MADS-box transcription factors have been shown to be involved in multiple developmental processes, including the regulation of floral organ formation and pollen maturation. However, the role of the MADS-box gene family in floral development of the alpine plant species Coptis teeta Wall, which is widely used in Traditional Chinese Medicine (TCM), is unknown. RESULTS: Sixty-six MADS-box genes were identified in the C. teeta genome. These genes were shown to be unevenly distributed throughout the genome of C. teeta. The majority of which (49) were classified as type I MADS-box genes and were further subdivided into four groups (Mα, Mß, Mγ and Mδ). The remainder were identified as belonging to the type II MADS-box gene category. It was observed that four pairs of segmental and tandem duplication had occurred in the C. teeta MADS-box gene family, and that the ratios of Ka/Ks were less than 1, suggesting that these genes may have experienced purifying selection during evolution. Gene expression profiling analysis revealed that 38 MADS-box genes displayed differential expression patterns between the M and F floral phenotypes. Sixteen of these MADS-box genes were further verified by RT-qPCR. The 3D structure of each subfamily gene was predicted, further indicating that MADS-box genes of the same type possess structural similarities to the known template. CONCLUSIONS: These data provide new insights into the molecular mechanism of dichogamy and herkogamy formation in C. teeta and establish a solid foundation for future studies of the MADS-box genes family in this medicinal plant species.


Assuntos
Coptis , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Proteínas de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Coptis/genética , Coptis/crescimento & desenvolvimento , Coptis/metabolismo , Filogenia , Família Multigênica , Genoma de Planta , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA