Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(11): 1530-1541, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591574

RESUMO

The activation of T cells by the T cell antigen receptor (TCR) results in the formation of signaling protein complexes (signalosomes), the composition of which has not been analyzed at a systems level. Here, we isolated primary CD4+ T cells from 15 gene-targeted mice, each expressing one tagged form of a canonical protein of the TCR-signaling pathway. Using affinity purification coupled with mass spectrometry, we analyzed the composition and dynamics of the signalosomes assembling around each of the tagged proteins over 600 s of TCR engagement. We showed that the TCR signal-transduction network comprises at least 277 unique proteins involved in 366 high-confidence interactions, and that TCR signals diversify extensively at the level of the plasma membrane. Integrating the cellular abundance of the interacting proteins and their interaction stoichiometry provided a quantitative and contextual view of each documented interaction, permitting anticipation of whether ablation of a single interacting protein can impinge on the whole TCR signal-transduction network.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Mapas de Interação de Proteínas/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Cromatografia de Afinidade/métodos , Espectrometria de Massas/métodos , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Mapeamento de Interação de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/genética
3.
Immunity ; 54(4): 632-647.e9, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33667382

RESUMO

Aging is associated with DNA accumulation and increased homeostatic proliferation of circulating T cells. Although these attributes are associated with aging-related autoimmunity, their direct contributions remain unclear. Conventionally, KU complex, the regulatory subunit of DNA-dependent protein kinase (DNA-PK), together with the catalytic subunit of DNA-PK (DNA-PKcs), mediates DNA damage repair in the nucleus. Here, we found KU complex abundantly expressed in the cytoplasm, where it recognized accumulated cytoplasmic DNA in aged human and mouse CD4+ T cells. This process enhanced T cell activation and pathology of experimental autoimmune encephalomyelitis (EAE) in aged mice. Mechanistically, KU-mediated DNA sensing facilitated DNA-PKcs recruitment and phosphorylation of the kinase ZAK. This activated AKT and mTOR pathways, promoting CD4+ T cell proliferation and activation. We developed a specific ZAK inhibitor, which dampened EAE pathology in aged mice. Overall, these findings demonstrate a KU-mediated cytoplasmic DNA-sensing pathway in CD4+ T cells that potentiates aging-related autoimmunity.


Assuntos
Envelhecimento/imunologia , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Citoplasma/imunologia , Proteína Quinase Ativada por DNA/imunologia , DNA/imunologia , Inflamação/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/imunologia , Proliferação de Células/fisiologia , Reparo do DNA/imunologia , Células HEK293 , Humanos , Células Jurkat , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células U937
4.
Nat Immunol ; 15(4): 384-392, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24584089

RESUMO

T cell antigen receptor (TCR)-mediated activation of T cells requires the interaction of dozens of proteins. Here we used quantitative mass spectrometry and activated primary CD4(+) T cells from mice in which a tag for affinity purification was knocked into several genes to determine the composition and dynamics of multiprotein complexes that formed around the kinase Zap70 and the adaptors Lat and SLP-76. Most of the 112 high-confidence time-resolved protein interactions we observed were previously unknown. The surface receptor CD6 was able to initiate its own signaling pathway by recruiting SLP-76 and the guanine nucleotide-exchange factor Vav1 regardless of the presence of Lat. Our findings provide a more complete model of TCR signaling in which CD6 constitutes a signaling hub that contributes to the diversification of TCR signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/imunologia , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Subpopulações de Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sinalização do Cálcio/genética , Células Cultivadas , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , Fosfoproteínas/genética , Ligação Proteica/genética , Proteômica , Proteínas Proto-Oncogênicas c-vav/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo
5.
Nat Immunol ; 14(8): 858-66, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23793062

RESUMO

Although T cell activation can result from signaling via T cell antigen receptor (TCR) alone, physiological T cell responses require costimulation via the coreceptor CD28. Through the use of an N-ethyl-N-nitrosourea-mutagenesis screen, we identified a mutation in Rltpr. We found that Rltpr was a lymphoid cell-specific, actin-uncapping protein essential for costimulation via CD28 and the development of regulatory T cells. Engagement of TCR-CD28 at the immunological synapse resulted in the colocalization of CD28 with both wild-type and mutant Rltpr proteins. However, the connection between CD28 and protein kinase C-θ and Carma1, two key effectors of CD28 costimulation, was abrogated in T cells expressing mutant Rltpr, and CD28 costimulation did not occur in those cells. Our findings provide a more complete model of CD28 costimulation in which Rltpr has a key role.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/imunologia , Antígenos CD28/imunologia , Proteínas de Transporte/imunologia , Guanilato Ciclase/imunologia , Proteína Quinase C/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/genética , Citometria de Fluxo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Alinhamento de Sequência , Análise de Sequência de DNA , Organismos Livres de Patógenos Específicos
6.
EMBO Rep ; 24(12): e57528, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37955227

RESUMO

Stimulator of interferon (IFN) genes (STING, also named MITA, ERIS, MPYS, or TMEM173) plays an essential role in DNA virus- or cytosolic DNA-triggered innate immune responses. Here, we demonstrate that the RING-in-between RING (RBR) E3 ubiquitin ligase family member RING-finger protein (RNF) 144A interacts with STING and promotes its K6-linked ubiquitination at K236, thereby enhancing STING translocation from the ER to the Golgi and downstream signaling pathways. The K236R mutant of STING displays reduced activity in promoting innate immune signal transduction. Overexpression of RNF144A upregulates HSV-1- or cytosolic DNA-induced immune responses, while knockdown of RNF144A expression has the opposite effect. In addition, Rnf144a-deficient cells exhibit impaired DNA virus- or cytosolic DNA-triggered signaling, and RNF144A protects mice from DNA virus infection. In contrast, RNF144A does not affect RNA virus- or cytosolic RNA-triggered innate immune responses. Taken together, our findings identify a new positive regulator of DNA virus- or cytosolic DNA-triggered signaling pathways and a critical ubiquitination site important for fully functional STING during antiviral responses.


Assuntos
Herpesvirus Humano 1 , Animais , Camundongos , DNA , Herpesvirus Humano 1/genética , Imunidade Inata , Ubiquitinação
7.
Nucleic Acids Res ; 51(5): 2195-2214, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36794705

RESUMO

NF-κB activates the primary inflammatory response pathway responsible for methicillin-resistant Staphylococcus aureus (MRSA)-induced lung inflammation and injury. Here, we report that the Forkhead box transcription factor FOXN3 ameliorates MRSA-induced pulmonary inflammatory injury by inactivating NF-κB signaling. FOXN3 competes with IκBα for binding to heterogeneous ribonucleoprotein-U (hnRNPU), thereby blocking ß-TrCP-mediated IκBα degradation and leading to NF-κB inactivation. FOXN3 is directly phosphorylated by p38 at S83 and S85 residues, which induces its dissociation from hnRNPU, thus promoting NF-κB activation. After dissociation, the phosphorylated FOXN3 becomes unstable and undergoes proteasomal degradation. Additionally, hnRNPU is essential for p38-mediated FOXN3 phosphorylation and subsequent phosphorylation-dependent degradation. Functionally, genetic ablation of FOXN3 phosphorylation results in strong resistance to MRSA-induced pulmonary inflammatory injury. Importantly, FOXN3 phosphorylation is clinically positively correlated with pulmonary inflammatory disorders. This study uncovers a previously unknown regulatory mechanism underpinning the indispensable role of FOXN3 phosphorylation in the inflammatory response to pulmonary infection.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação , Proteínas I-kappa B , Staphylococcus aureus Resistente à Meticilina/metabolismo , Transdução de Sinais , Pneumonia/genética , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
8.
BMC Immunol ; 25(1): 4, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195424

RESUMO

Immune cells, such as macrophages, B cells, neutrophils and T cell subsets, have been implicated in the context of obesity. However, the specific role of Th2 cells in adipose tissue function has remained elusive. Eight-week-old male CD3ε─/─ mice were randomly divided into two groups (≥ 5 mice per group): one received intravenous injection of Th2 cells isolated from LATY136F mice, while the other receiving PBS as a control. Both of groups were subjected to a high-fat diet (HFD). The adoptive transfer of polarized Th2 cells led to a significant reduction in obesity following a HFD. This reduction was accompanied by improvements in hepatic steatosis, glucose intolerance, and insulin resistance. Mechanistically, Th2 cell treatment promoted oxidative phosphorylation of adipocytes, thereby contributing to a reduction of lipid droplet accumulation. These findings suggest that Th2 cell therapy represents a novel approach for treating diet-induced obesity and other diseases involving lipid droplet accumulation disorders.


Assuntos
Dieta Hiperlipídica , Lipogênese , Masculino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Células Th2 , Obesidade/terapia , Transferência Adotiva
9.
Immunol Cell Biol ; 102(7): 605-617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38804132

RESUMO

M1/M2 macrophage polarization plays an important role in regulating the balance of the microenvironment within tissues. Moreover, macrophage polarization involves the reprogramming of metabolism, such as glucose and lipid metabolism. Transcriptional coactivator B-cell lymphoma-3 (Bcl-3) is an atypical member of the IκB family that controls inflammatory factor levels in macrophages by regulating nuclear factor kappa B pathway activation. However, the relationship between Bcl-3 and macrophage polarization and metabolism remains unclear. In this study, we show that the knockdown of Bcl-3 in macrophages can regulate glycolysis-related gene expression by promoting the activation of the nuclear factor kappa B pathway. Furthermore, the loss of Bcl-3 was able to promote the interferon gamma/lipopolysaccharide-induced M1 macrophage polarization by accelerating glycolysis. Taken together, these results suggest that Bcl-3 may be a candidate gene for regulating M1 polarization in macrophages.


Assuntos
Proteína 3 do Linfoma de Células B , Glicólise , Macrófagos , NF-kappa B , Animais , Camundongos , Proteína 3 do Linfoma de Células B/metabolismo , Polaridade Celular/genética , Regulação da Expressão Gênica , Interferon gama/metabolismo , Lipopolissacarídeos , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais
10.
PLoS Pathog ; 18(6): e1010596, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666747

RESUMO

Schistosomiasis is caused by parasitic flatworms known as schistosomes and affects over 200 million people worldwide. Prevention of T cell exhaustion by blockade of PD-1 results in clinical benefits to cancer patients and clearance of viral infections, however it remains largely unknown whether loss of PD-1 could prevent or cure schistosomiasis in susceptible mice. In this study, we found that S. japonicum infection dramatically induced PD-1 expression in T cells of the liver where the parasites chronically inhabit and elicit deadly inflammation. Even in mice infected by non-egg-producing unisex parasites, we still observed potent induction of PD-1 in liver T cells of C57BL/6 mice following S. japonicum infection. To determine the function of PD-1 in schistosomiasis, we generated PD-1-deficient mice by CRISPR/Cas9 and found that loss of PD-1 markedly increased T cell count in the liver and spleen of infected mice. IL-4 secreting Th2 cells were significantly decreased in the infected PD-1-deficient mice whereas IFN-γ secreting CD4+ and CD8+ T cells were markedly increased. Surprisingly, such beneficial changes of T cell response did not result in eradication of parasites or in lowering the pathogen burden. In further experiments, we found that loss of PD-1 resulted in both beneficial T cell responses and amplification of regulatory T cells that prevented PD-1-deficient T cells from unleashing anti-parasite activity. Moreover, such PD-1-deficient Tregs exert excessive immunosuppression and express larger amounts of adenosine receptors CD39 and CD73 that are crucial for Treg-mediated immunosuppression. Our experimental results have elucidated the function of PD-1 in schistosomiasis and provide novel insights into prevention and treatment of schistosomiasis on the basis of modulating host adaptive immunity.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Animais , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genética , Linfócitos T Reguladores
11.
J Immunol ; 208(12): 2613-2621, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623662

RESUMO

Keratinocytes, the epithelial cells of the skin, reprogram their gene expression and produce immune effector molecules when exposed to environmental and endogenous triggers of inflammation. It remains unclear how keratinocytes process physiological signals generated during skin irritation and switch from a homeostatic to an inflammatory state. In this article, we show that the stress-activated protein kinase p38α is crucial for keratinocytes to prompt changes in their transcriptome upon cytokine stimulation and drive inflammation in allergen-exposed skin. p38α serves this function by phosphorylating p63, a transcription factor essential for the lineage identity and stemness of the skin epithelium. Phosphorylation by p38α alters the activity of p63 and redeploys this developmental transcription factor to a gene expression program linked to inflammation. Genetic ablation and pharmacological inhibition of p38α or the p38α-p63 target gene product MMP13 attenuate atopic dermatitis-like disease in mice. Our study reveals an epithelial molecular pathway promoting skin inflammation and actionable through treatment with topical small-molecule therapeutics.


Assuntos
Dermatite Atópica , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fatores de Transcrição , Animais , Dermatite Atópica/metabolismo , Inflamação/metabolismo , Queratinócitos/metabolismo , Camundongos , Fosforilação , Fatores de Transcrição/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753498

RESUMO

The homeostasis of protein palmitoylation and depalmitoylation is essential for proper physiological functions in various tissues, in particular the central nervous system (CNS). The dysfunction of PPT1 (PPT1-KI, infantile neuronal ceroid lipofuscinosis [INCL] mouse model), which catalyze the depalmitoylation process, results in serious neurodegeneration accompanied by severe astrogliosis in the brain. Endeavoring to determine critical factors that might account for the pathogenesis in CNS by palm-proteomics, glial fibrillary acidic protein (GFAP) was spotted, indicating that GFAP is probably palmitoylated. Questions concerning if GFAP is indeed palmitoylated in vivo and how palmitoylation of GFAP might participate in neural pathology remain unexplored and are waiting to be investigated. Here we show that GFAP is readily palmitoylated in vitro and in vivo; specifically, cysteine-291 is the unique palmitoylated residue in GFAP. Interestingly, it was found that palmitoylated GFAP promotes astrocyte proliferation in vitro. Furthermore, we showed that PPT1 depalmitoylates GFAP, and the level of palmitoylated GFAP is overwhelmingly up-regulated in PPT1-knockin mice, which lead us to speculate that the elevated level of palmitoylated GFAP might accelerate astrocyte proliferation in vivo and ultimately led to astrogliosis in INCL. Indeed, blocking palmitoylation by mutating cysteine-291 into alanine in GFAP attenuate astrogliosis, and remarkably, the concurrent neurodegenerative pathology in PPT1-knockin mice. Together, these findings demonstrate that hyperpalmitoylated GFAP plays critical roles in regulating the pathogenesis of astrogliosis and neurodegeneration in the CNS, and most importantly, pinpointing that cysteine-291 in GFAP might be a valuable pharmaceutical target for treating INCL and other potential neurodegenerative diseases.


Assuntos
Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Tioléster Hidrolases/genética , Animais , Astrócitos/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Proteína Glial Fibrilar Ácida/genética , Gliose/genética , Humanos , Lipoilação , Camundongos , Camundongos Endogâmicos C57BL , Lipofuscinoses Ceroides Neuronais/genética
13.
EMBO Rep ; 22(4): e52196, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33719206

RESUMO

T and B cells continually recirculate between blood and secondary lymphoid organs. To promote their trans-endothelial migration (TEM), chemokine receptors control the activity of RHO family small GTPases in part via GTPase-activating proteins (GAPs). T and B cells express several RHO-GAPs, the function of most of which remains unknown. The ARHGAP45 GAP is predominantly expressed in hematopoietic cells. To define its in vivo function, we describe two mouse models where ARHGAP45 is ablated systemically or selectively in T cells. We combine their analysis with affinity purification coupled to mass spectrometry to determine the ARHGAP45 interactome in T cells and with time-lapse and reflection interference contrast microscopy to assess the role of ARGHAP45 in T-cell polarization and motility. We demonstrate that ARHGAP45 regulates naïve T-cell deformability and motility. Under physiological conditions, ARHGAP45 controls the entry of naïve T and B cells into lymph nodes whereas under competitive repopulation it further regulates hematopoietic progenitor cell engraftment in the bone marrow, and T-cell progenitor thymus seeding. Therefore, the ARGHAP45 GAP controls multiple key steps in the life of T and B cells.


Assuntos
Linfócitos T , Internalização do Vírus , Animais , Linfócitos B , Movimento Celular , Proteínas Ativadoras de GTPase/genética , Linfonodos , Camundongos , Timo
14.
Immunol Cell Biol ; 100(9): 691-704, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35849045

RESUMO

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) is an efficient tool for establishing genetic models including cellular models, and has facilitated unprecedented advancements in biomedical research. In both patients and cancer animal models, immune cells infiltrate the tumor microenvironment and some of them migrate to draining lymph nodes to exert antitumor effects. Among these immune cells, phagocytes such as macrophages and dendritic cells engulf tumor antigens prior to their crosstalk with T cells and elicit adaptive immune response against tumors. Melanoma cells are frequently used as a tumor model because of their relatively high level of somatic mutations and antigenicity. However, few genetic models have been developed using melanoma cell lines to track tumor cell phagocytosis, which is essential for understanding protective immune response in vivo. In this study, we used CRISPR/Cas9-mediated DNA cleavage and homologous recombination to develop a novel knock-in tool which expresses the ultra-bright fluorescent probe ZsGreen in YUMM1.7 melanoma cells. Using this novel tool, we measured the macrophagic engulfment of melanoma cells inside the tumor microenvironment. We also found that in tumor-grafted mice, a subset of dendritic cells efficiently engulfed YUMM1.7 cells and was preferentially trafficking tumor antigens to draining lymph nodes. In addition, we used this knock-in tool to assess the impact of a point mutation of CD11b on phagocytosis in the tumor microenvironment. Our results demonstrate that the ZsGreen-expressing YUMM1.7 melanoma model provides a valuable tool for the study of phagocytosis in vivo.


Assuntos
Antígeno CD11b , Melanoma , Fagocitose , Animais , Antígenos de Neoplasias , Antígeno CD11b/genética , Linhagem Celular , Linhagem Celular Tumoral , Corantes Fluorescentes , Melanoma/genética , Camundongos , Mutação Puntual , Microambiente Tumoral
15.
J Lipid Res ; 60(12): 2006-2019, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570505

RESUMO

During foam cell formation and atherosclerosis development, the scavenger receptor CD36 plays critical roles in lipid uptake and triggering of atherogenicity via the activation of Vav molecules. The Vav family includes three highly conserved members known as Vav1, Vav2, and Vav3. As Vav1 and Vav3 were found to exert function in atherosclerosis development, it remains thus to decipher whether Vav2 also plays a role in the development of atherosclerosis. In this study we found that Vav2 deficiency in RAW264.7 macrophages significantly diminished oxidized LDL uptake and CD36 signaling, demonstrating that each Vav protein family member was required for foam cell formation. Genetic disruption of Vav2 in ApoE-deficient C57BL/6 mice significantly inhibited the severity of atherosclerosis. Strikingly, we further found that the genetic deletion of each member of the Vav protein family by CRISPR/Cas9 resulted in a similar alteration of transcriptomic profiles of macrophages. The three members of the Vav proteins were found to form complexes, and genetic ablation of each single Vav molecule was sufficient to prevent endocytosis of CD36. The functional interdependence of the three Vav family members in foam cell formation was due to their indispensable roles in transcriptomic programing, lipid uptake, and activation of the JNK kinase in macrophages.


Assuntos
Aterosclerose/metabolismo , Células Espumosas/citologia , Multimerização Proteica , Proteínas Proto-Oncogênicas c-vav/química , Proteínas Proto-Oncogênicas c-vav/metabolismo , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Sequência de Bases , Antígenos CD36/metabolismo , Diferenciação Celular , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Estrutura Quaternária de Proteína , Transporte Proteico , Proteínas Proto-Oncogênicas c-vav/deficiência , Proteínas Proto-Oncogênicas c-vav/genética , Células RAW 264.7
16.
Biomed Pharmacother ; 175: 116782, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776682

RESUMO

LAG3 is an inhibitory immune checkpoint expressed on activated T and NK cells. Blocking the interaction of LAG3 with its ligands MHC-II and FGL1 renders T cells improved cytotoxicity to cancer cells. Current study generated a panel of LAG3 monoclonal antibodies (mAbs) through immunization of mice followed by phage display. Some of them bound to the D1-D2 domain of LAG3, which is known for the engagement of its ligands FGL1 and MHC-II. Three outperformers, M208, M226, and M234, showed stronger blocking activity than Relatlimab in the FGL1 binding. Furthermore, M234 showed dual inhibition of FGL1 (IC50 of 20.6 nM) and MHC-II binding (IC50 of 6.2 nM) to LAG3. In vitro functional tests showed that M234 significantly stimulated IFN-γ secretion from activated PBMC cells. In vivo studies in a mouse model of hepatocellular carcinoma xenografts demonstrated that combining M234 IgG with GPC3-targeted bispecific antibodies significantly improved efficacy. In addition, GPC3-targeted CAR-T cells secreting IL-21-M234 scFv fusion protein exhibited enhanced activity in inhibiting tumor growth and greatly increased the survival rate of mice. Taken together, M234 has potential in cancer immunotherapy and warrants further clinical trial.


Assuntos
Anticorpos Neutralizantes , Antígenos CD , Imunoterapia , Proteína do Gene 3 de Ativação de Linfócitos , Animais , Humanos , Camundongos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/imunologia , Ligantes , Imunoterapia/métodos , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Camundongos Endogâmicos BALB C , Ligação Proteica , Feminino , Anticorpos Monoclonais/farmacologia
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167490, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39236363

RESUMO

Vascular endothelial inflammation is crucial in hepatic ischemia-reperfusion injury (IRI). Our previous research has shown that connective tissue growth factor (CTGF), secreted by endothelial cells, protects against acute liver injury, but its upstream mechanism is unclear. We aimed to clarify the protective role of CTGF in endothelial cell inflammation during IRI and reveal the regulation between endoplasmic reticulum stress-induced activating transcription factor 6 (ATF6) and CTGF. Hypoxia/reoxygenation in endothelial cells, hepatic IRI in mice and clinical specimens were used to examine the relationships between CTGF and inflammatory factors and determine how ATF6 regulates CTGF and reduces damage. We found that activating ATF6 promoted CTGF expression and reduced liver damage in hepatic IRI. In vitro, activated ATF6 upregulated CTGF and downregulated inflammation, while ATF6 inhibition had the opposite effect. Dual-luciferase assays and chromatin immunoprecipitation confirmed that activated ATF6 binds to the CTGF promoter, enhancing its expression. Activated ATF6 increases CTGF and reduces extracellular regulated protein kinase 1/2 (ERK1/2) phosphorylation, decreasing inflammatory factors. Conversely, inhibiting ATF6 decreases CTGF and increases the phosphorylation of ERK1/2, increasing inflammatory factor levels. ERK1/2 inhibition reverses this effect. Clinical samples have shown that CTGF increases after IRI, inversely correlating with inflammatory cytokines. Therefore, ATF6 activation during liver IRI enhances CTGF expression and reduces endothelial inflammation via ERK1/2 inhibition, providing a novel target for diagnosing and treating liver IRI.


Assuntos
Fator 6 Ativador da Transcrição , Fator de Crescimento do Tecido Conjuntivo , Fígado , Traumatismo por Reperfusão , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Animais , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Humanos , Camundongos , Masculino , Fígado/metabolismo , Fígado/patologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
18.
Cell Discov ; 10(1): 53, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763950

RESUMO

Peripheral CD8+ T cell number is tightly controlled but the precise molecular mechanism regulating this process is still not fully understood. In this study, we found that epilepsy patients with loss of function mutation of DEPDC5 had reduced peripheral CD8+ T cells, and DEPDC5 expression positively correlated with tumor-infiltrating CD8+ T cells as well as overall cancer patient survival, indicating that DEPDC5 may control peripheral CD8+ T cell homeostasis. Significantly, mice with T cell-specific Depdc5 deletion also had reduced peripheral CD8+ T cells and impaired anti-tumor immunity. Mechanistically, Depdc5-deficient CD8+ T cells produced high levels of xanthine oxidase and lipid ROS due to hyper-mTORC1-induced expression of ATF4, leading to spontaneous ferroptosis. Together, our study links DEPDC5-mediated mTORC1 signaling with CD8+ T cell protection from ferroptosis, thereby revealing a novel strategy for enhancing anti-tumor immunity via suppression of ferroptosis.

19.
Signal Transduct Target Ther ; 9(1): 254, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327467

RESUMO

The downregulation of Cadm4 (Cell adhesion molecular 4) is a prominent feature in demyelination diseases, yet, the underlying molecular mechanism remains elusive. Here, we reveal that Cadm4 undergoes specific palmitoylation at cysteine-347 (C347), which is crucial for its stable localization on the plasma membrane (PM). Mutation of C347 to alanine (C347A), blocking palmitoylation, causes Cadm4 internalization from the PM and subsequent degradation. In vivo experiments introducing the C347A mutation (Cadm4-KI) lead to severe myelin abnormalities in the central nervous system (CNS), characterized by loss, demyelination, and hypermyelination. We further identify ZDHHC3 (Zinc finger DHHC-type palmitoyltransferase 3) as the enzyme responsible for catalyzing Cadm4 palmitoylation. Depletion of ZDHHC3 reduces Cadm4 palmitoylation and diminishes its PM localization. Remarkably, genetic deletion of ZDHHC3 results in decreased Cadm4 palmitoylation and defects in CNS myelination, phenocopying the Cadm4-KI mouse model. Consequently, altered Cadm4 palmitoylation impairs neuronal transmission and cognitive behaviors in both Cadm4-KI and ZDHHC3 knockout mice. Importantly, attenuated ZDHHC3-Cadm4 signaling significantly influences neuroinflammation in diverse demyelination diseases. Mechanistically, we demonstrate the predominant expression of Cadm4 in the oligodendrocyte lineage and its potential role in modulating cell differentiation via the WNT-ß-Catenin pathway. Together, our findings propose that dysregulated ZDHHC3-Cadm4 signaling contributes to myelin abnormalities, suggesting a common pathological mechanism underlying demyelination diseases associated with neuroinflammation.


Assuntos
Aciltransferases , Sistema Nervoso Central , Lipoilação , Bainha de Mielina , Lipoilação/genética , Animais , Aciltransferases/genética , Camundongos , Humanos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/metabolismo , Camundongos Knockout
20.
Oncogene ; 43(7): 495-510, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168654

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in the world with poor prognosis. Despite the promising applications of immunotherapy, the objective response rate is still unsatisfactory. We have previously shown that Hippo/YAP signaling acts as a powerful tumor promoter in ESCC. However, whether Hippo/YAP signaling is involved in tumor immune escape in ESCC remains largely unknown. Here, we show that YAP directly activates transcription of the "don't eat me" signal CD24, and plays a crucial role in driving tumor cells to avoid phagocytosis by macrophages. Mechanistically, YAP regulates CD24 expression by interacting with TEAD and binding the CD24 promoter to initiate transcription, which facilitates tumor cell escape from macrophage-mediated immune attack. Our animal model data and clinical data show that YAP combined with CD24 in tumor microenvironment redefines the impact of TAMs on the prognosis of ESCC patients which will provide a valuable basis for precision medicine. Moreover, treatment with YAP inhibitor altered the distribution of macrophages and suppressed tumorigenesis and progression of ESCC in vivo. Together, our study provides a novel link between Hippo/YAP signaling and macrophage-mediated immune escape, which suggests that the Hippo-YAP-CD24 axis may act as a promising target to improve the prognosis of ESCC patients. A proposed model for the regulatory mechanism of Hippo-YAP-CD24-signaling axis in the tumor-associated macrophages mediated immune escape.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Esofágicas/genética , Evasão da Resposta Imune , Proteínas de Sinalização YAP , Macrófagos/metabolismo , Fagocitose , Linhagem Celular Tumoral , Microambiente Tumoral , Antígeno CD24
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA