Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(3): 1892-1901, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38192235

RESUMO

Polyelectrolyte complexes (PECs) have emerged as an attractive category of materials for their water processability and some similarities to natural biopolymers. Herein, we employ the intrinsic hydroplasticity of PEC materials to enable the generation of porous structures with the aid of gas foaming. Such foamable materials are fabricated by simply mixing polycation, polyanion, and a UV-initiated chemical foaming agent in an aqueous solution, followed by molding into thin films. The gas foaming of the PEC films can be achieved upon exposure to UV illumination under water, where the films are plasticized and the gaseous products from the photolysis of foaming agents afford the formation, expanding, and merging of numerous bubbles. The porosity and morphology of the resulting porous films can be customized by tuning film composition, foaming conditions, and especially the degree of plasticizing effect, illustrating the high flexibility of this hydroplastic foaming method. Due to the rapid initiation of gas foaming, the present method enables the formation of porous structures via an instant one-step process, much more efficient than those existing strategies for porous PEC materials. More importantly, such a pore-forming mechanism might be extended to other hydroplastic materials (e.g., biopolymers) and help to yield hydroplasticity-based processing strategies.

2.
Small ; 19(4): e2205003, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424182

RESUMO

Two-dimensional nanofluidic membranes offer great opportunities for developing efficient and robust devices for ionic/water-nexus energy harvesting. However, low counterion concentration and long pathway through limited ionic flux restrict their output performance. Herein, it is demonstrated that rapid diffusion kinetics can be realized in two-dimensional nanofluidic membranes by introducing in-plane holes across nanosheets, which not only increase counterion concentration but also shorten pathway length through the membranes. Thus, the holey membranes exhibited an enhanced performance relative to the pristine ones in terms of osmotic energy conversion. In particular, a biomimetic multilayered membrane sequentially assembled from pristine and holey sections offers an optimized combination of selectivity and permeability, therefore generating a power density up to 6.78 W m-2 by mixing seawater and river water, superior to the majority of the state-of-the-art lamellar nanofluidic membranes. This work highlights the importance of channel morphologies and presents a general strategy for effectively improving ion transport through lamellar membranes for high-performance nanofluidic devices.

3.
ACS Omega ; 7(16): 13853-13860, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559176

RESUMO

Macroporous structures can be developed within polyelectrolyte multilayer films for efficient drug loading, but these structures tend to collapse or fracture during conventional drying procedures. Herein, a facile dehydrating method for macroporous polyelectrolyte multilayer films is proposed using solvent exchange to ethanol and then spontaneous evaporation. During these processes, the collapse of the macroporous structures can be effectively avoided, which can be ascribed to a combined effect of two factors. On one hand, capillary pressure during ethanol evaporation is relatively small since the surface tension of ethanol is much lower than that of water. On the other hand, solvent exchange suppresses the interdiffusion of polyelectrolytes and substantially increases the mechanical strength of the macroporous films, more than three orders of magnitude, making the pore walls highly tolerant of the capillary pressure. The stability of macroporous polyelectrolyte films to ethanol enables the repeated wicking from the ethanol solution of drugs, leading to a higher loading beyond previous studies. Such a high loading is favorable for the long-term release of drugs from the surfaces of modified substrates and maintaining a local drug concentration above the minimum effective concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA