RESUMO
NR0B1 is frequently activated in hepatocellular carcinoma (HCC). However, the role of NR0B1 is controversial in HCC. In this study, we observed that NR0B1 was an independent poor prognostic factor, negatively correlated with the overall survival of HCC and the relapse-free survival of patients treated with sorafenib. Meanwhile, NR0B1 promoted the proliferation, migration, and invasion of HCC cells, inhibited sorafenib-induced apoptosis, and elevated the IC50 of sorafenib in HCC cells. NR0B1 was further displayed to increase sorafenib-induced autophagic vesicles and activate Beclin1/LC3-II-dependent autophagy pathway. Finally, NR0B1 was revealed to transcriptionally suppress GSK3ß that restrains AMPK/mTOR-driven autophagy and increases BAX-mediated apoptosis. Collectively, our study uncovered that the ectopic expression of NR0B1 augmented sorafenib-resistance in HCC cells by activating autophagy and inhibiting apoptosis. Our findings supported that NR0B1 was a detrimental factor for HCC prognosis.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia , Apoptose , Autofagia , Proliferação de Células , Linhagem Celular Tumoral , Receptor Nuclear Órfão DAX-1RESUMO
Gestational glucose homeostasis influences mother's metabolic health, pregnancy outcomes, fetal development and offspring growth. To understand the genetic roles in pregnant glucose metabolism and genetic predisposition for gestational diabetes (GDM), we reviewed the recent literature up to Jan, 2018 and evaluated the influence of T2DM-related genetic variants on gestational glycemic traits and glucose tolerance. A total of 140 variants of 89 genes were integrated. Their associations with glycemic traits in and outside pregnancy were compared. The genetic circumstances underlying glucose metabolism exhibit a similarity between pregnant and non-pregnant populations. While, not all of the T2DM-associated genetic variants are related to pregnant glucose tolerance, such as genes involved in fasting insulin/C-peptide regulation. Some genetic variants may have distinct effects on gestational glucose homeostasis. And certain genes may be particularly involved in this process via specific mechanisms, such as HKDC1, MTNR1B, BACE2, genes encoding cell cycle regulators, adipocyte regulators, inflammatory factors and hepatic factors related to gestational glucose sensing and insulin signaling. However, it is currently difficult to evaluate these associations with quantitative synthesis due to inadequate data, different analytical methods, varied measurements for glycemic traits, controversies in diagnosis of GDM, and unknown ethnicity- and/or sex-related influences on pregnant maternal metabolism. In conclusion, different genetic associations with glycemic traits may exist between pregnant and non-pregnant conditions. Comprehensive research on specific genetic regulation in gestation is necessary.
Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , Redes Reguladoras de Genes , Variação Genética , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Feminino , Predisposição Genética para Doença , Hexoquinase/genética , Humanos , Gravidez , Receptor MT2 de Melatonina/genéticaRESUMO
Some X-linked genes necessary for spermiogenesis are specifically activated in the postmeiotic germ cells. However, the regulatory mechanism about this activation is not clearly understood. Here, we examined the potential mechanism controlling the transcriptional activation of the mouse testis specific gene A8 (Tsga8) gene in round spermatids. We observed that the Tsga8 expression was negatively correlated with the methylation level of the CpG sites in its core promoter. During spermatogenesis, the Tsga8 promoter was methylated in spermatogonia, and then demethylated in spermatocytes. The demethylation status of Tsga8 promoter was maintained through the postmeiotic germ cells, providing a potentially active chromatin for Tsga8 transcription. In vitro investigation showed that the E12 and Spz1 transcription factors can enhance the Tsga8 promoter activity by binding to the unmethylated E-box motif within the Tsga8 promoter. Additionally, the core Tsga8 promoter drove green fluorescent protein (GFP) expression in the germ cells of Tsga8-GFP transgenic mice, and the GFP expression pattern was similar to that of endogenous Tsga8. Moreover, the DNA methylation profile of the Tsga8-promoter-driven transgene was consistent with that of the endogenous Tsga8 promoter, indicating the existence of a similar epigenetic modification for the Tsga8 promoter to ensure its spatiotemporal expression in vivo. Taken together, this study reports the details of a regulatory mechanism that includes DNA methylation and transcription factors to mediate the postmeiotic expression of an X-linked gene.
Assuntos
Desmetilação do DNA , Nucleoproteínas/genética , Espermátides/metabolismo , Ativação Transcricional , Animais , Células Cultivadas , Epigênese Genética/fisiologia , Feminino , Genes Ligados ao Cromossomo X/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Nucleoproteínas/metabolismo , Regiões Promotoras Genéticas , Espermatogênese/genética , Fatores de Transcrição/fisiologia , Ativação Transcricional/genéticaRESUMO
Anophthalmia is a rare eye development anomaly resulting in absent ocular globes or tissue in the orbit since birth. Here, we investigated a newborn with bilateral anophthalmia in a Chinese family. Exome sequencing revealed that compound heterozygous mutations c.287G > A (p.(Arg96His)) and c.709G > A (p.(Gly237Arg)) of the ALDH1A3 gene were present in the affected newborn. Both mutations were absent in all of the searched databases, including 10,000 in-house Chinese exome sequences, and these mutations were confirmed as having been transmitted from the parents. Comparative amino acid sequence analysis across distantly related species revealed that the residues at positions 96 and 234 were evolutionarily highly conserved. In silico analysis predicted these changes to be damaging, and in vitro expression analysis revealed that the mutated alleles were associated with decreased protein production and impaired tetrameric protein formation. This study firstly reported that compound heterozygous mutations of the ALDH1A3 gene can result in anophthalmia in humans, thus highlighting those heterozygous mutations in ALDH1A3 should be considered for molecular screening in anophthalmia, particularly in cases from families without consanguineous relationships.
RESUMO
OBJECTIVE: To investigate the temporal and spatial features of mouse Rnf148 gene expression and the function of RING finger domain of Rnf148 protein. METHODS: The whole RNA was extracted from different tissues of adult mice, embryo in four developmental stages, and testes of postnatal mice respectively. RT-PCR and Northern blotting analysis were used to investigate the expression of Rnf148 gene in the above tissues. The in vitro expression vector for GST-Rnf148 fused protein was constructed, which encompassing the entire RING domain of Rnf148 protein. GST-Rnf148 fused protein was expressed in Escherichia coli. BL21(DE3) cells and purified with glutathione-sepharose 4B. In vitro ubiquitination assay was performed to analyze whether GST-Rnf148 fused protein possess the function of E3 ubiquitin ligase. RESULTS: The Mice Rnf148 mRNA expression was only observed in testis, and Northern blotting confirmed that there was only one 1.2 kb mRNA band present in mice testis. Rnf148 mRNA started to appear in the testis of day 21 mice, and then increased dramatically and reached to the highest level in day 25, and continued to express thereafter. GST-Rnf148 fused protein was induced and purified, in vitro ubiquitination reaction showed that the recombinant protein has E3 ubiquitin ligase activity. CONCLUSION: Rnf148 gene is specifically expressed in mice testis.
Assuntos
Testículo/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Escherichia coli , Expressão Gênica , Masculino , Camundongos , RNA Mensageiro , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
BACKGROUND: Familial papillary thyroid cancer (fPTC) is recognized as a distinct entity only recently and no fPTC predisposing genes have been identified. Several potential regions and susceptibility loci for sporadic PTC have been reported. We aimed to evaluate the role of the reported susceptibility loci and potential risk genomic region in a Chinese familial multinodular goiter (fMNG) with PTC family. METHODS: We sequenced the related risk genomic regions and analyzed the known PTC susceptibility loci in the Chinese family members who consented to join the study. These loci included (1) the point mutations of the BRAF and RET; (2) the possible susceptibility loci to sporadic PTC; and (3) the suggested potential fMNG syndrome with PTC risk region. RESULTS: The members showed no mutations in the common susceptible BRAF and RET genomic region, although contained several different heterozygous alleles in the RET introns. All the members were homozygous for PTC risk alleles of rs966423 (C) at chromosome 2q35, rs2910164 (C) at chromosome 5q24 and rs2439302 (G) at chromosome 8p12; while carried no risk allele of rs4733616 (T) at chromosome 8q24, rs965513 (A) or rs1867277 (A) at chromosome 9q22 which were associated with radiation-related PTC. The frequency of the risk allele of rs944289 (T) but not that of rs116909374 (T) at chromosome 14q13 was increased in the MNG or PTC family members. CONCLUSIONS: Our work provided additional evidence to the genetic predisposition to a Chinese familial form of MNG with PTC. The family members carried quite a few risk alleles found in sporadic PTC; particularly, homozygous rs944289 (T) at chromosome 14q13 which was previously shown to be linked to a form of fMNG with PTC. Moreover, the genetic determinants of radiation-related PTC were not presented in this family.
RESUMO
Haplotype-based association analysis has several advantages over single-SNP association analysis. However, to date all haplotype-disease associations have not excluded recombination interference among multiple loci and hence some results might be confounded by recombination interference. Association of sister haplotypes with a complex disease, based on recombination disequilibrium (RD) was presented. Sister haplotypes can be determined by translating notation of DNA base haplotypes to notation of genetic genotypes. Sister haplotypes provide haplotype pairs available for haplotype-disease association analysis. After performing RD tests in control and case cohorts, a two-by-two contingency table can be constructed using sister haplotype pair and case-control pair. With this standard two-by-two table, one can perform classical Chi-square test to find statistical haplotype-disease association. Applying this method to a haplotype dataset of Alzheimer disease (AD), association of sister haplotypes containing ApoE3/4 with risk for AD was identified under no RD. Haplotypes within gene IL-13 were not associated with risk for breast cancer in the case of no RD and no association of haplotypes in gene IL-17A with risk for coronary artery disease were detected without RD. The previously reported associations of haplotypes within these genes with risk for these diseases might be due to strong RD and/or inappropriate haplotype pairs.
RESUMO
Ferroptosis has demonstrated significant potential in treating radiochemotherapy-resistant cancers, but its efficacy can be affected by recently discovered ferroptosis suppressors. In this study, we discovered that NR0B1 protects against erastin- or RSL3-induced ferroptosis in lung cancer cells. Transcriptomic analysis revealed that NR0B1 significantly interfered with the expression of 12 ferroptosis-related genes, and the expression level of NR0B1 positively correlated with that of c-JUN, NRF2, and CBS. We further revealed that NR0B1 suppression of ferroptosis depended on the activities of c-JUN, NRF2, and CBS. NR0B1 directly promoted the expression of NRF2 and c-JUN and indirectly upregulated CBS expression through enhancing NRF2 and/or c-JUN transcription. Moreover, we showed that NR0B1 depletion restrained xenograft tumor growth and facilitated RSL3-induced ferroptosis in the tumors. In conclusion, our findings uncover that NR0B1 suppresses ferroptosis by activating the c-JUN/NRF2-CBS signaling pathway in lung cancer cells, providing new evidence for the involvement of NR0B1 in drug resistance during cancer therapy.
RESUMO
The onset, severity, and ultimate outcome of malaria infection are influenced by parasite-expressed virulence factors as well as by individual host responses to these determinants. In both humans and mice, liver injury follows parasite entry, persisting to the erythrocytic stage in the case of infection with the fatal strain of Plasmodium falciparum. Hepatic nuclear factor (HNF)-1α is a master regulator of not only the liver damage and adaptive responses but also diverse metabolic functions. In this study, we analyzed the expression of host HNF-1α in relation to malaria infection and evaluated its interaction with the 5'-untranslated region of subtilisin-like protease 2 (subtilase, Sub2). Recombinant human HNF-1α expressed by a lentiviral vector (LV HNF-1α) was introduced into mice. Interestingly, differences in the activity of the 5'-untranslated region of the Pf-Sub2 promoter were detected in 293T cells, and LV HNF-1α was observed to influence promoter activity, suggesting that host HNF-1α interacts with the Sub2 gene.
Assuntos
Regiões 5' não Traduzidas/genética , Regulação da Expressão Gênica/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Subtilisinas/genética , Animais , Linhagem Celular , DNA de Protozoário/genética , Vetores Genéticos , Fator 1-alfa Nuclear de Hepatócito/administração & dosagem , Fator 1-alfa Nuclear de Hepatócito/genética , Interações Hospedeiro-Parasita , Humanos , Injeções Intravenosas , Lentivirus/genética , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA de Protozoário/genética , Proteínas Recombinantes , Transdução de Sinais , Subtilisinas/metabolismoRESUMO
Background: We examined the genetic variants of a Chinese family with a 22-month-old infant with sporadic non-syndromic sensorineural hearing loss (NSHL). Methods: The whole-exome sequence data in the family, especially the de novo variants presented in the patient, were analyzed and the effect of the disease-causing genetic variants on the protein expression level and cellular localization were examined by cell-based functional assay. Results: The infant had no known NSHL-causing variants, except two compound heterozygous variants in connexin26 gene GJB2; one was the c.79G>A, c.341A>G haplotype from the asymptomatic mother who was benign, and the other was a de novo pathogenic c.262G>C (p.A88P). In vitro, GJB2 with c.262G>C was weakly expressed and displayed a punctate distribution in the cytoplasm and cytomembrane, while wild type GJB2 was robustly expressed in the cytomembrane. We deduced that the de novo pathogenic GJB2 c.262G>C exacerbated loss-of-function in the context of leaky variants c.79G>A, c.341A>G in the patient. Interestingly, further analysis of exome sequences revealed that the occurrence of de novo pathogenic variants in the infant was frequent. Among the total~47,000 variants, 143 were de novo in the patient, whereas among all 74 variants predicted to be pathogenic/likely pathogenic, 21 were heterozygous and two were homozygous de novo. The occurrence rate of de novo deleterious variants was much higher (31.1%, 23/74) than that in total (0.34%, 143/47,000). It is notable that most genes with de novo deleterious variants were environment-sensitive, such as GJB2, MNK1, MNK2, MUC4, RAD21 and DNA copy number variations. Conclusions: The full picture of genetic variants in the exome might help us to interpret the NSHL-causing variants. More research is needed into the causes of de novo deleterious variants and gene-environment interactions in congenital NSHL.
Assuntos
Variações do Número de Cópias de DNA , Perda Auditiva Neurossensorial , China , Surdez , Perda Auditiva Neurossensorial/genética , Humanos , Lactente , Mutação , Linhagem , Sequenciamento do ExomaRESUMO
The onset, severity, and ultimate outcome of malaria infection are influenced by parasite-expressed virulence factors and individual host responses to these determinants. In both humans and mice, liver injury is involved after parasite entry, which persists until the erythrocyte stage after infection with the fatal strain Plasmodium falciparum (Pf). Hepatocyte growth factor (HGF) has strong anti-apoptotic effects in various kinds of cells, and also has diverse metabolic functions. In this work, Pf-subtilisin-like protease 2 (Pf-Sub2) 5'untranslated region (UTR) was analyzed and its transcriptional activity was estimated by luciferase expression. Fourteen TATA boxes were observed but only one Oct-1 and c-Myb were done. In addition, host HGF interaction with Pf-Sub2 was evaluated by co-transfection of HGF- and Pf-Sub2-cloned vector. Interestingly, -1,422/+12 UTR exhibited the strongest luciferase activity but -329 to +12 UTR did not exhibit luciferase activity. Moreover, as compared with the control of unexpressed HGF, the HGF protein suppressed luciferase expression driven by the 5'untranslated region of the Pf-Sub2 promoter. Taken together, it is suggested that HGF controls and interacts with the promoter region of the Pf-Sub2 gene.
Assuntos
Regiões 5' não Traduzidas , Fator de Crescimento de Hepatócito/metabolismo , Interações Hospedeiro-Parasita , Plasmodium falciparum/patogenicidade , Transcrição Gênica , Fusão Gênica Artificial , Linhagem Celular , Genes Reporter , Hepatócitos/parasitologia , Humanos , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica , SubtilisinasRESUMO
The ectopic activation of NR0B1 is involved in the development of some cancers. However, the regulatory mechanisms controlling NR0B1 expression are not well understood. Therefore, the epigenetic modifications promoting NR0B1 activation were examined in this study. NR0B1 protein was detected in cancerous tissues of more than 50% of human lung adenocarcinoma (ADCA) cases and tended to be expressed in low-differentiated cancerous tissues obtained from males. Nevertheless, NR0B1 activation in ADCA has not previously been correlated with DNA demethylation. NR0B1 expression was not detected in 293T cells, although it contains a hypomethylated NR0B1 promoter. Treating 293T cells with a histone deacetylase inhibitor increased acetylated histone H4 binding to the NR0B1 promoter and activated NR0B1 expression. In contrast, treatment with histone methylase inhibitors decreased the methylation of histones H3K9 and H3K27 and slightly induced NR0B1 transcription. Furthermore, the level of acetyl-histone H4 binding to the NR0B1 promoter increased, whereas the occupancy of H3K27me3 was lower in cancerous tissues than in non-cancerous tissues. Similar histone occupancies were confirmed in a comparison of cancerous tissues with strong, moderate and negative NR0B1 expression. In conclusion, this study shows that CpG methylation within the NR0B1 promoter is not involved in the in vivo regulation of NR0B1 expression, whereas the hyperacetylation of histone H4 and the unmethylation of histones H3K9 and H3K27, and their binding to the NR0B1 promoter results in decondensed euchromatin for NR0B1 activation.
Assuntos
Adenocarcinoma/genética , Receptor Nuclear Órfão DAX-1/metabolismo , Desmetilação do DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Acetilação , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Linhagem Celular Tumoral , Ilhas de CpG , Eucromatina/metabolismo , Feminino , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Fatores SexuaisRESUMO
AIMS/INTRODUCTION: Variants in cell cycle regulation genes, CDKAL1 and CDKN2A/2B, have been suggested to be associated with type 2 diabetes, and also play a role in insulin procession in non-diabetic European individuals. Rs7754580 in CDKAL1 and rs7020996 in CDKN2A/2B were found to be associated with gestational diabetes in Chinese individuals. In order to understand the metabolism mechanism of greatly upregulated maternal insulin signaling during pregnancy and the pathogenesis of gestational diabetes, we investigated the impact of rs7754580 and rs7020996 on gestational insulin regulation and procession. MATERIALS AND METHODS: We recruited 1,146 unrelated, non-diabetic, pregnant Han Chinese women (age 28.5 ± 4.1 years, body mass index 21.4 ± 2.6 kg/m(2)), and gave them oral glucose tolerance tests. The indices of insulin sensitivity, insulin disposition, insulin release and proinsulin to insulin conversion were calculated. Rs7754580 in the CDKAL1 gene and rs7020996 in the CDKN2A/2B gene were genotyped. Under an additive model, we analyzed the associations between the variants and gestational insulin indices using logistic regression. RESULTS: By adjusting for maternal age, body mass index and the related interactions, CDKAL1 rs7754580 risk allele C was detected to be associated with increased insulin sensitivity (P = 0.011), decreased insulin disposition (P = 0.0002) and 2-h proinsulin conversion (P = 0.017). CDKN2A/2B rs7020996 risk allele T was found to be related to decreased insulin sensitivity (P = 0.002) and increased insulin disposition (P = 0.0001). CONCLUSIONS: The study showed that cell cycle regulating genes might have a distinctive effect on gestational insulin sensitivity, ß-cell function and proinsulin conversion in pregnant Han Chinese women.
RESUMO
We investigate the impact of genetic variants on transiently upregulated gestational insulin signaling. We recruited 1152 unrelated nondiabetic pregnant Han Chinese women (age 28.5 ± 4.1 years; body mass index [BMI] 21.4 ± 2.6 kg/m(2)) and gave them oral glucose tolerance tests. Matsuda index of insulin sensitivity, homeostatic model assessment of insulin resistance, indices of insulin disposition, early-phase insulin release, fasting state, and 0 to 120 minute's proinsulin to insulin conversion were used to dissect insulin physiological characterization. Several variants related to ß-cell function were genotyped. The genetic impacts were analyzed using logistic regression under an additive model. By adjusting for maternal age, BMI, and the related interactions, the genetic variants in ABCC8, CDKAL1, CDKN2A, HNF1B, KCNJ11, and MTNR1B were detected to impact gestational insulin signaling through heterogeneous mechanisms; however, compared with that in nonpregnant metabolism, the genetic effects seem to be eminently and heavily influenced by maternal age and BMI, indicating possible particular mechanisms underlying gestational metabolism and diabetic pathogenesis.
Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , Interação Gene-Ambiente , Loci Gênicos , Variação Genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transdução de Sinais , Adulto , Povo Asiático/genética , Glicemia/genética , Glicemia/metabolismo , Índice de Massa Corporal , China , Diabetes Mellitus Tipo 2/etnologia , Diabetes Gestacional/etnologia , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Resistência à Insulina/etnologia , Resistência à Insulina/genética , Modelos Logísticos , Idade Materna , Fenótipo , Gravidez , Adulto JovemRESUMO
In this paper the background and advances of stem cell technique in stomatology were reviewed, especially the lately research of repair of maxillofacial defects with bone marrow stem cells, repair or reconstitution of teeth with dental pulp stem cells and repair of other tissues such as parotid with embryonic stem cell. Stem cell technique provides a new choice and extensive prospect of application for stomatology, therefore, deserves further research.
Assuntos
Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Medicina BucalRESUMO
Abstract Anophthalmia is a rare eye development anomaly resulting in absent ocular globes or tissue in the orbit since birth. Here, we investigated a newborn with bilateral anophthalmia in a Chinese family. Exome sequencing revealed that compound heterozygous mutations c.287G > A (p.(Arg96His)) and c.709G > A (p.(Gly237Arg)) of the ALDH1A3 gene were present in the affected newborn. Both mutations were absent in all of the searched databases, including 10,000 in-house Chinese exome sequences, and these mutations were confirmed as having been transmitted from the parents. Comparative amino acid sequence analysis across distantly related species revealed that the residues at positions 96 and 234 were evolutionarily highly conserved. In silico analysis predicted these changes to be damaging, and in vitro expression analysis revealed that the mutated alleles were associated with decreased protein production and impaired tetrameric protein formation. This study firstly reported that compound heterozygous mutations of the ALDH1A3 gene can result in anophthalmia in humans, thus highlighting those heterozygous mutations in ALDH1A3 should be considered for molecular screening in anophthalmia, particularly in cases from families without consanguineous relationships.
RESUMO
BACKGROUND: This study aimed to explore the association of MTNR1B genetic variants with gestational plasma glucose homeostasis in pregnant Chinese women. METHODS: A total of 1,985 pregnant Han Chinese women were recruited and evaluated for gestational glucose tolerance status with a two-step approach. The four MTNR1B variants rs10830963, rs1387153, rs1447352, and rs2166706 which had been reported to associate with glucose levels in general non-pregnant populations, were genotyped in these women. Using an additive model adjusted for age and body mass index (BMI), association of these variants with gestational fasting and postprandial plasma glucose (FPG and PPG) levels were analyzed by multiple linear regression; relative risk of developing gestational glucose intolerance was calculated by logistic regression. Hardy-Weinberg Equilibrium was tested by Chi-square and linkage disequilibrium (LD) between these variants was estimated by measures of D' and r(2). RESULTS: In the pregnant Chinese women, the MTNR1B variant rs10830963, rs1387153, rs2166706 and rs1447352 were shown to be associated with the increased 1 hour PPG level (p=8.04 × 10(-10), 5.49 × 10(-6), 1.89 × 10(-5) and 0.02, respectively). The alleles were also shown to be associated with gestational glucose intolerance with odds ratios (OR) of 1.64 (p=8.03 × 10(-11)), 1.43 (p=1.94 × 10(-6)), 1.38 (p=1.63 × 10(-5)) and 1.24 (p=0.007), respectively. MTNR1B rs1387153, rs2166706 were shown to be associated with gestational FPG levels (p=0.04). Our data also suggested that, the LD pattern of these variants in the studied women conformed to that in the general populations: rs1387153 and rs2166706 were in high LD, they linked moderately with rs10830963, but might not linked with rs1447352;rs10830963 might not link with rs1447352, either. In addition, the MTNR1B variants were not found to be associated with any other traits tested. CONCLUSIONS: The MTNR1B is likely to be involved in the regulation of glucose homeostasis during pregnancy.
Assuntos
Glicemia/genética , Intolerância à Glucose/genética , Polimorfismo Genético , Complicações na Gravidez/genética , Segundo Trimestre da Gravidez/genética , Receptor MT1 de Melatonina/genética , Adulto , Povo Asiático , Glicemia/metabolismo , China , Feminino , Intolerância à Glucose/metabolismo , Humanos , Gravidez , Complicações na Gravidez/metabolismo , Segundo Trimestre da Gravidez/sangue , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de MelatoninaRESUMO
The Krüppel-associated box (KRAB) domain is a transcriptional repression module responsible for the DNA binding-dependent gene silencing activity of hundreds of vertebrate zinc finger proteins. We previously exploited KRAB-mediated repression within the context of a tet repressor-KRAB fusion protein and of lentiviral vectors to create a method of external gene control. We demonstrated that with this system transcriptional silencing was fully reversible in cell culture as well as in vivo. Here we reveal that, in sharp contrast, KRAB-mediated repression results in irreversible gene silencing through promoter DNA methylation if it acts during the first few days of mouse development.
Assuntos
Proteínas de Transporte/metabolismo , Metilação de DNA , Desenvolvimento Embrionário/fisiologia , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/fisiologia , Proteínas Repressoras/metabolismo , Transcrição Gênica/fisiologia , Animais , Proteínas de Transporte/genética , Inativação Gênica/fisiologia , Lentivirus , Camundongos , Proteínas Nucleares/genética , Estrutura Terciária de Proteína/genética , Proteínas Repressoras/genéticaRESUMO
APOBEC3G (also known as CEM15) is an innate intracellular antiretroviral factor that is counteracted by the Vif protein of lentiviruses. While APOBEC3G orthologues from several species are active against a broad range of retroviruses, given Vif proteins have a narrow spectrum of activity. For instance, HIV-1 Vif efficiently blocks APOBEC3G from human but not African green monkey (AGM), whereas the reverse is observed with SIV(AGM) Vif. Here, we demonstrate that a single amino acid at position 128 of human and AGM APOBEC3G governs the virus-specific sensitivity of these proteins to Vif-mediated inhibition. Furthermore, we show that this phenotype correlates with the ability of Vif to bind APOBEC3G and interfere with its incorporation into virions. These results shed light on an important determinant of the tropism of primate lentiviruses.