Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 34(9): 12127-12146, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686865

RESUMO

Alzheimer's disease (AD) is characterized by a chronic decline in cognitive function and is pathologically typified by cerebral deposition of amyloid-ß peptide (Aß). The production of Aß is mediated by sequential proteolysis of amyloid precursor protein (APP) by ß- and γ-secretases, and has been implicated as the essential determinant of AD pathology. Previous studies have demonstrated that the level of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in the membrane may potentially modulate Aß production. Given that PI(4,5)P2 is produced by type 1 phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), we sought to determine whether the level of PIP5K type Iα (PIP5K1A) can affect production of Aß by modulating the lipid composition of the membrane. Using a HEK-derived cell line that constitutively expresses yellow fluorescent protein-tagged APP (APP-YFP), we demonstrated that overexpression of PIP5K1A results in significant enhancement of non-amyloidogenic APP processing and a concomitant suppression of the amyloidogenic pathway, leading to a marked decrease in secreted Aß. Consistently, cells overexpressing PIP5K1A exhibited a significant redistribution of APP-YFP from endosomal compartments to the cell surface. Our findings suggest that PIP5K1A may play a critical role in governing Aß production by modulating membrane distribution of APP, and as such, the pathway may be a valuable therapeutic target for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ratos
2.
Proc Natl Acad Sci U S A ; 114(15): E3129-E3138, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28351972

RESUMO

Proteolytic processing of amyloid precursor protein (APP) C-terminal fragments (CTFs) by γ-secretase underlies the pathogenesis of Alzheimer's disease (AD). An RNA interference screen using APP-CTF [99-residue CTF (C99)]- and Notch-specific γ-secretase interaction assays identified a unique ErbB2-centered signaling network that was predicted to preferentially govern the proteostasis of APP-C99. Consistently, significantly elevated levels of ErbB2 were confirmed in the hippocampus of human AD brains. We then found that ErbB2 effectively suppressed autophagic flux by physically dissociating Beclin-1 from the Vps34-Vps15 complex independent of its kinase activity. Down-regulation of ErbB2 by CL-387,785 decreased the levels of C99 and secreted amyloid-ß in cellular, zebrafish, and mouse models of AD, through the activation of autophagy. Oral administration of an ErbB2-targeted CL-387,785 for 3 wk significantly improves the cognitive functions of APP/presenilin-1 (PS1) transgenic mice. This work unveils a noncanonical function of ErbB2 in modulating autophagy and establishes ErbB2 as a therapeutic target for AD.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Encéfalo/patologia , Presenilina-1/metabolismo , Receptor ErbB-2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Proteostase , Receptor ErbB-2/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
3.
Int J Mol Sci ; 18(9)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28902166

RESUMO

Protein homeostasis or proteostasis is a fundamental cellular property that encompasses the dynamic balancing of processes in the proteostasis network (PN). Such processes include protein synthesis, folding, and degradation in both non-stressed and stressful conditions. The role of the PN in neurodegenerative disease is well-documented, where it is known to respond to changes in protein folding states or toxic gain-of-function protein aggregation. Dual-specificity phosphatases have recently emerged as important participants in maintaining balance within the PN, acting through modulation of cellular signaling pathways that are involved in neurodegeneration. In this review, we will summarize recent findings describing the roles of dual-specificity phosphatases in neurodegeneration and offer perspectives on future therapeutic directions.


Assuntos
Fosfatases de Especificidade Dupla/fisiologia , Doenças Neurodegenerativas/metabolismo , Proteostase/fisiologia , Apoptose , Autofagia , Fosfatases de Especificidade Dupla/classificação , Estresse do Retículo Endoplasmático , Resposta ao Choque Térmico/fisiologia , Homeostase/fisiologia , Humanos , Estresse Oxidativo/fisiologia , Agregados Proteicos , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas Quinases/metabolismo
4.
Biochem Biophys Res Commun ; 477(2): 283-9, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27301640

RESUMO

Tau plays important roles in the assembly and stabilization of the microtubule structure to facilitate axonal transport in mammalian brain. The intracellular tau aggregates to form paired helical filaments leading to neurodegenerative disorders, collectively called tauopathies. In our previous report, we established a zebrafish model to express tau-GFP to induce neuronal death, which could be directly traced in vivo. Recently, we used this model to screen 400 herbal extracts and found 45 of them to be effective on reducing tau-GFP-induced neuronal death. One of the effective herbal extracts is the Tripterygium wilfordii stem extract. HPLC analysis and functional assay demonstrated that epicatechin (EC) is the major compound of Tripterygium wilfordii stem extract to decrease the neurotoxicity induced by tau-GFP. Using a luciferase reporter assay in the zebrafish, we confirmed that EC could activate Nrf2-dependent antioxidant responses to significantly increase the ARE-controlled expression of luciferase reporter gene. These data suggest that EC from the Tripterygium wilfordii stem extract could diminish tau-GFP-induced neuronal death through the activation of Nrf2.


Assuntos
Catequina/administração & dosagem , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Tripterygium/química , Proteínas de Peixe-Zebra/metabolismo , Proteínas tau/metabolismo , Animais , Relação Dose-Resposta a Droga , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Peixe-Zebra , Proteínas tau/genética
5.
J Biomed Sci ; 23: 25, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26852117

RESUMO

BACKGROUND: The axonal tau protein is a tubulin-binding protein, which plays important roles in the formation and stability of the microtubule. Mutations in the tau gene are associated with familial forms of frontotemporal dementia with Parkinsonism linked to chromosome-17 (FTDP-17). Paired helical filaments of tau and extracellular plaques containing beta-amyloid are found in the brain of Alzheimer's disease (AD) patients. RESULTS: Transgenic models, including those of zebrafish, have been employed to elucidate the mechanisms by which tau protein causes neurodegeneration. In this study, a transient expression system was established to express GFP fusion proteins of zebrafish and human tau under the control of a neuron-specific HuC promoter. Approximately ten neuronal cells expressing tau-GFP in zebrafish embryos were directly imaged and traced by time-lapse recording, in order to evaluate the neurotoxicity induced by tau-GFP proteins. Expression of tau-GFP was observed to cause high levels of neuronal death. However, multiple signaling factors, such as Bcl2-L1, Nrf2, and GDNF, were found to effectively protect neuronal cells expressing tau-GFP from death. Treatment with chemical compounds that exert anti-oxidative or neurotrophic effects also resulted in a similar protective effect and maintained human tau-GFP protein in a phosphorylated state, as detected by antibodies pT212 and AT8. CONCLUSIONS: The novel finding of this study is that we established an expression system expressing tau-GFP in zebrafish embryos were directly imaged and traced by time-lapse recording to evaluate the neurotoxicity induced by tau-GFP proteins. This system may serve as an efficient in vivo imaging platform for the discovery of novel drugs against tauopathy.


Assuntos
Demência Frontotemporal/metabolismo , Neurônios/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Morte Celular , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 17/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Neurônios/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas tau/genética
6.
Arch Pharm (Weinheim) ; 349(5): 327-41, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27027880

RESUMO

Copper and zinc have been found to contribute to the burden of amyloid-ß (Aß) aggregations in neurodegenerative Alzheimer's disease (AD). Dysregulation of these metals leads to the generation of reactive oxygen species (ROS) and eventually results in oxidative damage and accumulation of the Aß peptide, which are the key elements of the disease. Aiming to pursue the discovery of new modulators for the disease, we here rationally focused on conjugating the core hydroxyquinoline of the metal-protein attenuating compound PBT2 and the N-methylanilide analogous moiety of the Aß imaging agent to build a new type of multi-target modulators of Aß aggregations. We found that the N,N-dimethylanilinyl imines 7a, 8a, and the corresponding amines 7b, 8b exerted efficient inhibition of Cu(2+) - or Zn(2+) -induced Aß aggregations and significant disassembly of metal-mediated Aß aggregated fibrils. Further, 7a and 7b also exhibited significant ROC scavenging effects compared to PBT2. The results suggested that 7a and 7b are promising lead compounds for the development of a new therapy for AD.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Hidroxiquinolinas/química , Hidroxiquinolinas/uso terapêutico , Agregação Patológica de Proteínas/tratamento farmacológico , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Quelantes/síntese química , Quelantes/farmacologia , Quelantes/uso terapêutico , Clioquinol/análogos & derivados , Clioquinol/química , Clioquinol/farmacologia , Clioquinol/uso terapêutico , Cobre/efeitos adversos , Hidroxiquinolinas/síntese química , Hidroxiquinolinas/farmacologia , Relação Estrutura-Atividade , Zinco/efeitos adversos
7.
Biochem J ; 460(1): 69-78, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24593306

RESUMO

Fucosylation regulates various pathological events in cells. We reported that different levels of CRT (calreticulin) affect the cell adhesion and metastasis of bladder cancer. However, the precise mechanism of tumour metastasis regulated by CRT remains unclear. Using a DNA array, we identified FUT1 (fucosyltransferase 1) as a gene regulated by CRT expression levels. CRT regulated cell adhesion through α1,2-linked fucosylation of ß1 integrin and this modification was catalysed by FUT1. To clarify the roles for FUT1 in bladder cancer, we transfected the human FUT1 gene into CRT-RNAi stable cell lines. FUT1 overexpression in CRT-RNAi cells resulted in increased levels of ß1 integrin fucosylation and rescued cell adhesion to type-I collagen. Treatment with UEA-1 (Ulex europaeus agglutinin-1), a lectin that recognizes FUT1-modified glycosylation structures, did not affect cell adhesion. In contrast, a FUT1-specific fucosidase diminished the activation of ß1 integrin. These results indicated that α1,2-fucosylation of ß1 integrin was not involved in integrin-collagen interaction, but promoted ß1 integrin activation. Moreover, we demonstrated that CRT regulated FUT1 mRNA degradation at the 3'-UTR. In conclusion, the results of the present study suggest that CRT stabilized FUT1 mRNA, thereby leading to an increase in fucosylation of ß1 integrin. Furthermore, increased fucosylation levels activate ß1 integrin, rather than directly modifying the integrin-binding sites.


Assuntos
Calreticulina/biossíntese , Fucosiltransferases/fisiologia , Integrina beta1/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Fucosiltransferases/genética , Humanos , Integrina beta1/genética , Estabilidade Proteica , Estabilidade de RNA/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Galactosídeo 2-alfa-L-Fucosiltransferase
8.
Arch Pharm (Weinheim) ; 347(3): 161-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24339192

RESUMO

Synthesis and evaluation of difluorophenylglycinols as new modulators of proteolytic processing of the amyloid-ß precursor proteins for Alzheimer's therapies were described. A range of N-substituted (R)- and (S)-difluorophenylglycinols, structured on the amino alcohol framework, were explored by incorporating the arylsulfonyl moieties and various N-substituents. Evans' chiral auxiliary strategy was employed for the asymmetric synthesis of these enantiomeric difluorophenylglycinols. Compounds with effects on the γ-secretase inhibition and ERK-mediated signaling pathways were evaluated on cell-based assays. Among them, N-cyclopropylmethyl derivatives R-12c and R-13c showed modest γ-secretase inhibition as well as ERK-dependent activation.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Etanolaminas/farmacologia , Inibidores de Proteases/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ativação Enzimática , Etanolaminas/síntese química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Estrutura Molecular , Inibidores de Proteases/síntese química , Proteólise , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Transfecção
9.
Biochem Biophys Res Commun ; 442(3-4): 189-94, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24269816

RESUMO

Zebrafish synuclein-γ2 (sncgb) has been reported to be expressed specifically in the notochord. However, the mechanism by which the sncgb gene promoter is regulated has not been described. In this paper, we demonstrate that Zinc finger protein 219-like (ZNF219L) and sox9a are involved in the regulation of sncgb gene expression. Furthermore, we observed that over-expression of both ZNF219L and Sox9a resulted in increased sncgb expression. In addition, ZNF219L is physically associated with Sox9a, and simultaneous morpholino knockdown of znf219L and sox9a caused a synergistic decrease of sncgb expression in the notochord. Taken together, our results reveal that coordination of ZNF219L with Sox9a is involved in the regulation of notochord-specific expression of sncgb.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Notocorda/embriologia , Fatores de Transcrição SOX9/metabolismo , Sinucleínas/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Técnicas de Silenciamento de Genes , Notocorda/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOX9/genética , Fatores de Transcrição/genética , Peixe-Zebra/genética
10.
Toxicol Mech Methods ; 23(4): 247-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23193992

RESUMO

Dioxin and dioxin-like compounds are among the most prevalent and toxic environmental pollutants. At present, analytical chemical techniques are considered the gold standard for detection of dioxins. Here, we describe a highly sensitive and cost-effective alternative, based on bioluminescence and bioluminescence resonance energy transfer (BRET). Upon binding to dioxin, aryl hydrocarbon receptor (AHR) dissociates from HSP90 and subsequently translocates to the nucleus, where it interacts with AHR nuclear translocator (ARNT). We generated cell lines that stably co-express a fusion protein of AHR and Renilla luciferase (AHR-RL) and either HSP90 or ARNT tagged with yellow fluorescent protein (HSP90-YFP or ARNT-YFP). The fluorescent signals of YFP are activated by the emission of RL while the interactions between AHR and HSP90 (or ARNT) were monitored. Application of 3-methylcholanthrene, the AHR agonist, enhances BRET signals in cells co-expressing AHR-RL, AIP-His, P23-His and ARNT-YFP (AAPA cells), while suppressing BRET signals in cells co-expressing AHR-RL, AIP-His, P23-His and HSP90-YFP (AAPH cells). In addition, dioxin treatment reduced Renilla luminescence in AAPH cells in a concentration-dependent manner, due to the degradation of AHR. Intriguingly, the detection limit for dioxin in our AHR degradation assay was as low as 10(-17) M. This work highlights the potential of AHR-RL degradation assays to detect dioxin-like pollutants.


Assuntos
Bioensaio/métodos , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Dioxinas/análise , Poluentes Ambientais/análise , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Limite de Detecção , Luciferases de Renilla/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Plasmídeos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
11.
Am J Pathol ; 179(3): 1394-404, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21741930

RESUMO

ß1,4-N-acetylgalactosaminyltransferase III (B4GALNT3) promotes the formation of GalNAcß1,4GlcNAc (LacdiNAc or LDN). Drosophila ß1,4-N-acetylgalactosaminyltransferase A (B4GALNTA) contributes to the synthesis of LDN, which helps regulate neuronal development. In this study, we investigated the expression and role of B4GALNT3 in human neuroblastoma (NB). We used IHC analysis to examine 87 NB tumors, and we identified correlations between B4GALNT3 expression and clinicopathologic factors, including patient survival. Effects of recombinant B4GALNT3 on cell behavior and signaling were studied in SK-N-SH and SH-SY5Y NB cells. Increased expression of B4GALNT3 in NB tumors correlated with a favorable histologic profile (P < 0.001, χ² test) and early clinical staging (P = 0.041, χ² test) and was a favorable prognostic factor for survival as evaluated by univariate and multivariate analyses. Reexpression of B4GALNT3 in SK-N-SH and SH-SY5Y cells suppressed cell proliferation, colony formation, migration, and invasion. Moreover, B4GALNT3 increased the LacdiNAc modification of ß1 integrin, leading to decreased phosphorylation of focal adhesion kinase (FAK), Src, paxillin, Akt, and ERK1/2. B4GALNT3-mediated suppression of cell migration and invasion were substantially reversed by concomitant expression of constitutively active Akt or MEK. We conclude that B4GALNT3 predicts a favorable prognosis for NB and suppresses the malignant phenotype via decreasing ß1 integrin signaling.


Assuntos
Biomarcadores Tumorais/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Neuroblastoma/mortalidade , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Sobrevivência Celular , Transformação Celular Neoplásica/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Integrina beta1 , Masculino , Invasividade Neoplásica/prevenção & controle , Neuroblastoma/metabolismo , Prognóstico , Transdução de Sinais , Tretinoína/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-22719789

RESUMO

Flemingia macrophylla (Leguminosae) is a popular traditional remedy used in Taiwan as anti-inflammatory, promoting blood circulation and antidiabetes agent. Recent study also suggested its neuroprotective activity against Alzheimer's disease. Therefore, the effects of F. macrophylla on Aß production and degradation were studied. The effect of F. macrophylla on Aß metabolism was detected using the cultured mouse neuroblastoma cells N2a transfected with human Swedish mutant APP (swAPP-N2a cells). The effects on Aß degradation were evaluated on a cell-free system. An ELISA assay was applied to detect the level of Aß1-40 and Aß1-42. Western blots assay was employed to measure the levels of soluble amyloid precursor protein and insulin degrading enzyme (IDE). Three fractions of F. macrophylla modified Aß accumulation by both inhibiting ß-secretase and activating IDE. Three flavonoids modified Aß accumulation by activating IDE. The activated IDE pool by the flavonoids was distinctly regulated by bacitracin (an IDE inhibitor). Furthermore, flavonoid 94-18-13 also modulates Aß accumulation by enhancing IDE expression. In conclusion, the components of F. macrophylla possess the potential for developing new therapeutic drugs for Alzheimer's disease.

13.
Cancer Sci ; 102(12): 2191-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21917080

RESUMO

Insulin-like growth factor II mRNA-binding protein 3 (IMP3) has been reported to enhance proliferation and invasion in various cancers. The role of IMP3 on neuroblastoma (NB) is unknown. We aimed to clarify the prognostic significance of IMP3 expression in patients with NB. By microarray analysis, high IMP3 expression was found in patients with poor outcome. IMP3 expression in 90 NB samples was analyzed by immunohistochemical staining to correlate with clinical stages, histology, and patient outcome. Positive IMP3 expression was detected in 52 of 90 patients, and was significantly correlated with undifferentiated histology, advanced stages, MYCN amplification, and poor outcome. In subgroups, positive IMP3 expression could predict an even worse prognosis in patients with advanced disease, with normal MYCN status, or with MYCN amplification (P = 0.005, P = 0.001, and P = 0.033, respectively). The IMP3 expression decreased by induction of differentiation with retinoid acid treatment in SK-N-DZ and SK-N-SH cells in vitro. The invasion ability of NB cells also decreased as IMP3 knockdown by using RNA interference in vitro. In summary, high expression of IMP3 in NB might contribute to the undifferentiated phenotype and invasive behaviors, leading to a poor prognosis. Determining IMP3 expression in NB could help to improve a personalized therapy.


Assuntos
Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteínas de Ligação a RNA/metabolismo , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Proliferação de Células , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteína Proto-Oncogênica N-Myc , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neuroblastoma/genética , Neuroblastoma/mortalidade , Proteínas Nucleares/biossíntese , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas/biossíntese , Prognóstico , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Tretinoína/farmacologia
14.
Mol Neurobiol ; 58(5): 2204-2214, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417224

RESUMO

Dual-specificity phosphatases (DUSPs) comprise a unique group of enzymes that dephosphorylate signaling proteins at both phospho-serine/threonine and phospho-tyrosine residues. Since Notch signaling is an essential pathway for neuronal cell fate determination and development that is also upregulated in Alzheimer's disease tissues, we sought to explore whether and how DUSPs may impact Notch processing. Our results show that overexpression of DUSP15 concomitantly and dose-dependently increased the steady-state levels of recombinant Notch (extracellular domain-truncated Notch, NotchΔE) protein and its cleaved product, Notch intracellular domain (NICD). The overall ratio of NotchΔE to NICD was unchanged by overexpression of DUSP15, suggesting that the effect is independent of γ-secretase. Interestingly, overexpression of DUSP15 also dose-dependently increased phosphorylated ERK1/2. Phosphorylated ERK1/2 is known to be positively correlated with Notch protein level, and we found that DUSP15-mediated regulation of Notch was dependent on ERK1/2 activity. Together, our findings reveal the existence of a previously unidentified DUSP15-ERK1/2-Notch signaling axis, which could potentially play a role in neuronal differentiation and neurological disease.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Neurônios/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Diferenciação Celular/fisiologia , Células HEK293 , Humanos , Fosforilação
15.
Cancers (Basel) ; 13(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771727

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Patients with inflammatory bowel disease (IBD) have a high risk of developing CRC. Inflammatory cytokines are regulated by complex gene networks and regulatory RNAs, especially microRNAs. MicroRNA-21 (miR-21) is amongst the most frequently upregulated microRNAs in inflammatory responses and cancer development. miR-21 has become a target for genetic and pharmacological regulation in various diseases. However, the association between inflammation and tumorigenesis in the gut is largely unknown. Hence, in this study, we generated a zebrafish model (ImiR-21) with inducible overexpression of miR-21 in the intestine. The results demonstrate that miR-21 can induce CRC or colitis-associated cancer (CAC) in ImiR-21 through the PI3K/AKT, PDCD4/TNF-α, and IL-6/STAT3 signaling network. miR-21 activated the PI3K/AKT and NF-κB signaling pathways, leading to initial inflammation; thereafter, miR-21 and TNF-α repressed PDCD4 and its tumor suppression activity. Eventually, active STAT3 stimulated a strong inflammatory response and activated the invasion/metastasis process of tumor cells. Hence, our findings indicate that miR-21 is critical for the development of CRC/CAC via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling networks.

16.
Acta Neuropathol Commun ; 9(1): 112, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158119

RESUMO

Tau pathology is instrumental in the gradual loss of neuronal functions and cognitive decline in tauopathies, including Alzheimer's disease (AD). Earlier reports showed that adenosine metabolism is abnormal in the brain of AD patients while consequences remained ill-defined. Herein, we aimed at investigating whether manipulation of adenosine tone would impact Tau pathology, associated molecular alterations and subsequent neurodegeneration. We demonstrated that treatment with an inhibitor (J4) of equilibrative nucleoside transporter 1 (ENT1) exerted beneficial effects in a mouse model of Tauopathy. Treatment with J4 not only reduced Tau hyperphosphorylation but also rescued memory deficits, mitochondrial dysfunction, synaptic loss, and abnormal expression of immune-related gene signatures. These beneficial effects were particularly ascribed to the ability of J4 to suppress the overactivation of AMPK (an energy reduction sensor), suggesting that normalization of energy dysfunction mitigates neuronal dysfunctions in Tauopathy. Collectively, these data highlight that targeting adenosine metabolism is a novel strategy for tauopathies.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Tauopatias/metabolismo , Tauopatias/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos
17.
Cell Mol Neurobiol ; 30(5): 795-806, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20204693

RESUMO

Mammalian p62/sequestosome-1 protein binds to both LC3, the mammalian homologue of yeast Atg8, and polyubiquitinated cargo proteins destined to undergo autophagy-mediated degradation. We previously identified a cargo receptor-binding domain in Atg8 that is essential for its interaction with the cargo receptor Atg19 in selective autophagic processes in yeast. We, thus, sought to determine whether this interaction is evolutionally conserved from yeast to mammals. Using an amino acid replacement approach, we demonstrate that cells expressing mutant LC3 (LC3-K30D, LC3-K51A, or LC3-L53A) all exhibit defective lipidation of LC3, a disrupted LC3-p62 interaction, and impaired autophagic degradation of p62, suggesting that the p62-binding site of LC3 is localized within an evolutionarily conserved domain. Importantly, whereas cells expressing these LC3 mutants exhibited similar overall autophagic activity comparable to that of cells expressing wild-type LC3, autophagy-mediated clearance of the aggregation-prone mutant Huntingtin was defective in the mutant-expressing cells. Together, these results suggest that p62 directly binds to the evolutionarily conserved cargo receptor-binding domain of Atg8/LC3 and selectively mediates the clearance of mutant Huntingtin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Evolução Molecular , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Aminoácidos Básicos/metabolismo , Animais , Morte Celular , Linhagem Celular , Humanos , Proteína Huntingtina , Interações Hidrofóbicas e Hidrofílicas , Mutação/genética , Fagossomos/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Proteína Sequestossoma-1 , Relação Estrutura-Atividade , Ubiquitina/química , Ubiquitina/metabolismo
18.
Adv Sci (Weinh) ; 7(2): 1901165, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993280

RESUMO

Finding an effective therapeutic regimen is an urgent demand for various neurodegenerative disorders including Huntington's disease (HD). For the difficulties in observing the dynamic aggregation and oligomerization process of mutant Huntingtin (mHtt) in vivo, the evaluation of potential drugs at the molecular protein level is usually restricted. By combing lifetime-based fluorescence microscopies and biophysical tools, it is showcased that a designed amphiphilic peptide, which targets the mHtt at an early stage, can perturb the oligomer assembly process nanoscopically, suppress the amyloid property of mHtt, conformationally transform the oligomers and/or aggregates of mHtt, and ameliorate mHtt-induced neurological damage and aggregation in cell and HD mouse models. It is also found that this amphiphilic peptide is able to transport to the brain and rescue the memory deficit through intranasal administration, indicating its targeting specificity in vivo. In summary, a biophotonic platform is provided to investigate the oligomerization/aggregation process in detail that offers insight into the design and effect of a targeted therapeutic agent for Huntington's disease.

19.
Nat Commun ; 11(1): 3147, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561720

RESUMO

Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade ß-catenin. Disruption of ß-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and ß-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.


Assuntos
Proteínas Argonautas/metabolismo , Senescência Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Germinativas/metabolismo , Animais , Proteínas Argonautas/genética , Caderinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Inativação Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Ovário/citologia , Ovário/metabolismo , Retroelementos/genética , Transdução de Sinais , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Receptores Toll-Like/metabolismo , beta Catenina/metabolismo
20.
Clin Cancer Res ; 14(19): 6237-45, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18829503

RESUMO

PURPOSE: Neuroblastoma (NB) is a heterogeneous neoplasm. Detailed biological discrimination is critical for the effective treatment of this disease. Because the tumor behavior of NB is closely associated with the histologic state of differentiation, we thus aimed to identify novel differentiation-associated markers of NB with prognostic implication. EXPERIMENTAL DESIGN: A human NB cell line SH-SY5Y was used as a model system to explore potential biomarkers for the differentiation of NB by proteomic analyses. Seventy-two NB tumor tissues were subsequently investigated by immunohistochemistry to validate the correlations between the expression of a novel prognostic marker, various clinicopathologic and biological factors, and patient survival. RESULTS: Using two-dimensional differential gel electrophoresis, we found a total of 24 spots of proteins in SH-SY5Y cells whose expression was enhanced following differentiation. Glucose-regulated protein 75 (GRP75) was unambiguously identified as one of the five proteins that were dramatically up-regulated following differentiation. Immunohistochemical analyses of 72 NB tumor tissues further revealed that positive GRP75 immunostaining is strongly correlated with differentiated histologies (P < 0.001), mass-screened tumors (P = 0.016), and early clinical stages (P < 0.001) but inversely correlated with MYCN amplification (P = 0.010). Univariate and multivariate survival analyses showed that GRP75 expression is an independent favorable prognostic factor. CONCLUSIONS: The present findings clearly showed that our proteomics-based novel experimental paradigm could be a powerful tool to uncover novel biomarkers associated with the differentiation of NB. Our data also substantiate an essential role of GRP75 in the differentiation of NB.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Neuroblastoma/metabolismo , Proteômica/métodos , Diferenciação Celular , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Neuroblastoma/terapia , Prognóstico , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA