Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(1-2): 305-317.e10, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328918

RESUMO

Phagocytic receptors must diffuse laterally to become activated upon clustering by multivalent targets. Receptor diffusion, however, can be obstructed by transmembrane proteins ("pickets") that are immobilized by interacting with the cortical cytoskeleton. The molecular identity of these pickets and their role in phagocytosis have not been defined. We used single-molecule tracking to study the interaction between Fcγ receptors and CD44, an abundant transmembrane protein capable of indirect association with F-actin, hence likely to serve as a picket. CD44 tethers reversibly to formin-induced actin filaments, curtailing receptor diffusion. Such linear filaments predominate in the trailing end of polarized macrophages, where receptor mobility was minimal. Conversely, receptors were most mobile at the leading edge, where Arp2/3-driven actin branching predominates. CD44 binds hyaluronan, anchoring a pericellular coat that also limits receptor displacement and obstructs access to phagocytic targets. Force must be applied to traverse the pericellular barrier, enabling receptors to engage their targets.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Receptores de Hialuronatos/metabolismo , Receptores Imunológicos/metabolismo , Adulto , Animais , Sítios de Ligação , Células COS , Células Cultivadas , Chlorocebus aethiops , Feminino , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/genética , Ácido Hialurônico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
2.
Cell ; 171(3): 683-695.e18, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28988771

RESUMO

Epidermal growth factor receptor (EGFR) regulates many crucial cellular programs, with seven different activating ligands shaping cell signaling in distinct ways. Using crystallography and other approaches, we show how the EGFR ligands epiregulin (EREG) and epigen (EPGN) stabilize different dimeric conformations of the EGFR extracellular region. As a consequence, EREG or EPGN induce less stable EGFR dimers than EGF-making them partial agonists of EGFR dimerization. Unexpectedly, this weakened dimerization elicits more sustained EGFR signaling than seen with EGF, provoking responses in breast cancer cells associated with differentiation rather than proliferation. Our results reveal how responses to different EGFR ligands are defined by receptor dimerization strength and signaling dynamics. These findings have broad implications for understanding receptor tyrosine kinase (RTK) signaling specificity. Our results also suggest parallels between partial and/or biased agonism in RTKs and G-protein-coupled receptors, as well as new therapeutic opportunities for correcting RTK signaling output.


Assuntos
Epigen/química , Epirregulina/química , Receptores ErbB/química , Receptores ErbB/metabolismo , Cristalografia por Raios X , Epigen/metabolismo , Epirregulina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Ligantes , Modelos Moleculares , Multimerização Proteica
3.
Chembiochem ; 25(5): e202300755, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228506

RESUMO

Oligonucleotide therapeutics are becoming increasingly important as more are approved by the FDA, both for treatment and vaccination. Similarly, dynamic DNA nanotechnology is a promising technique that can be used to sense exogenous input molecules or endogenous biomarkers and integrate the results of multiple sensing reactions in situ via a programmed cascade of reactions. The combination of these two technologies could be highly impactful in biomedicine by enabling smart oligonucleotide therapeutics that can autonomously sense and respond to a disease state. A particular challenge, however, is the limited lifetime of standard nucleic acid components in living cells and organisms due to degradation by endogenous nucleases. In this work, we address this challenge by incorporating mirror-image, ʟ-DNA nucleotides to produce heterochiral "gapmers". We use dynamic DNA nanotechnology to show that these modifications keep the oligonucleotide intact in living human cells for longer than an unmodified strand. To this end, we used a sequential transfection protocol for delivering multiple nucleic acids into living human cells while providing enhanced confidence that subsequent interactions are actually occurring within the cells. Taken together, this work advances the state of the art of ʟ-nucleic acid protection of oligonucleotides and DNA circuitry for applications in vivo.


Assuntos
DNA , Ácidos Nucleicos , Humanos , Oligonucleotídeos , Endonucleases , Nanotecnologia
4.
FASEB J ; 34(2): 2105-2125, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908021

RESUMO

How receptor tyrosine kinase (RTK) growth signaling is controlled physiologically is incompletely understood. We have previously provided evidence that the survival and mitotic activities of vascular endothelial cell growth factor receptor-2 (VEGFR2) signaling are dependent on C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 joint signaling in a physically interactive platform. Herein, we document that the platelet derived and epidermal growth factor receptors (PDGFR and EGFR) are regulated by the same interconnection and clarify the mechanism underlying the dependence. We show that the joint signaling is required to overcome dominant restraint on RTK function by the combined repression of tonically activated PHLPP, SOCS1/SOCS3, and CK2/Fyn dependent PTEN. Signaling studies showed that augmented PI-3KÉ£ activation is the process that overcomes the multilevel growth restraint. Live-cell flow cytometry and single-particle tracking indicated that blockade of C3ar1/C5ar1 or IL-6R signaling suppresses RTK growth factor binding and RTK complex formation. C3ar1/C5ar1 blockade abrogated growth signaling of four additional RTKs. Active relief of dominant growth repression via joint C3ar1/C5ar1 and IL-6R joint signaling thus enables RTK mitotic/survival signaling.


Assuntos
Células Endoteliais/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Complemento/metabolismo , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Células Endoteliais/citologia , Genes Dominantes , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , Fosfoproteínas Fosfatases/genética , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento/genética , Receptores de Interleucina-6/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
5.
Int J Mol Sci ; 20(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086024

RESUMO

Programmed death 1 (PD-1), when activated by its ligands PD-L1 and PD-L2, suppresses active immune cells in normal immune regulation to limit autoimmunity and, in tumors, as a mechanism of immune evasion. PD-L1 expression has been described as both a prognostic and predictive marker in many solid and hematologic neoplasms, as targeted therapies against the PD-1/PD-L1 interaction have gained clinical importance. PD-L1 expression has been assessed in a few studies on mastocytosis. We review this literature and the need for further investigation of the tumor-immune interaction in mastocytosis.


Assuntos
Mastocitose/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Mastocitose/genética , Proteína 2 Ligante de Morte Celular Programada 1/genética
6.
Immunity ; 31(3): 469-79, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19747859

RESUMO

Crosslinking of IgE-bound FcepsilonRI triggers mast cell degranulation. Previous fluorescence recovery after photobleaching (FRAP) and phosphorescent anisotropy studies suggested that FcepsilonRI must immobilize to signal. Here, single quantum dot (QD) tracking and hyperspectral microscopy methods were used for defining the relationship between receptor mobility and signaling. QD-IgE-FcepsilonRI aggregates of at least three receptors remained highly mobile over extended times at low concentrations of antigen that induced Syk kinase activation and near-maximal secretion. Multivalent antigen, presented as DNP-QD, also remained mobile at low doses that supported secretion. FcepsilonRI immobilization was marked at intermediate and high antigen concentrations, correlating with increases in cluster size and rates of receptor internalization. The kinase inhibitor PP2 blocked secretion without affecting immobilization or internalization. We propose that immobility is a feature of highly crosslinked immunoreceptor aggregates and a trigger for receptor internalization, but is not required for tyrosine kinase activation leading to secretion.


Assuntos
Multimerização Proteica , Receptores de IgE/imunologia , Transdução de Sinais , Animais , Antígenos/imunologia , Linhagem Celular Tumoral , Imunoglobulina E/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Subunidades Proteicas/imunologia , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas Tirosina Quinases/metabolismo , Pontos Quânticos , Ratos , Receptores de IgE/metabolismo , Quinase Syk
7.
Biophys J ; 108(5): 1013-26, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25762314

RESUMO

Deregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly. It may also induce important allosteric changes in the cytoplasmic domain. Despite extensive knowledge on the physiological activation of EGFR, the effect of targeted therapies on receptor conformation is not known and this particular aspect of receptor function, which can potentially be influenced by drug treatment, may in part explain the heterogeneous clinical response among cancer patients. Here, we used Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) combined with two-color single-molecule tracking to study the effect of ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) and phosphatase-based manipulation of EGFR phosphorylation on live cells. The distribution of dimer on-times was fitted to a monoexponential to extract dimer off-rates (koff). Our data show that pretreatment with gefitinib (active conformation binder) stabilizes the EGFR ligand-bound homodimer. Overexpression of EGFR-specific DEP-1 phosphatase was also found to have a stabilizing effect on the homodimer. No significant difference in the koff of the dimer could be detected when an anti-EGFR antibody (425 Snap single-chain variable fragment) that allows for dimerization of ligand-bound receptors, but not phosphorylation, was used. These results suggest that both the conformation of the extracellular domain and phosphorylation status of the receptor are involved in modulating the stability of the dimer. The relative fractions of these two EGFR subpopulations (interacting versus free) were obtained by a fractional-intensity analysis of ensemble FRET/FLIM images. Our combined imaging approach showed that both the fraction and affinity (surrogate of conformation at a single-molecule level) increased after gefitinib pretreatment or DEP-1 phosphatase overexpression. Using an EGFR mutation (I706Q, V948R) that perturbs the ability of EGFR to dimerize intracellularly, we showed that a modest drug-induced increase in the fraction/stability of the EGFR homodimer may have a significant biological impact on the tumor cell's proliferation potential.


Assuntos
Receptores ErbB/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Linhagem Celular Tumoral , Receptores ErbB/química , Receptores ErbB/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Fosforilação , Estabilidade Proteica , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo
8.
J Cell Sci ; 126(Pt 21): 4913-25, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23986485

RESUMO

Eukaryotic cells use multiple routes for receptor internalization. Here, we examine the topographical relationships of clathrin-dependent and clathrin-independent endocytic structures on the plasma membranes of leukemia-derived mast cells. The high affinity IgE receptor (FcεRI) utilizes both pathways, whereas transferrin receptor serves as a marker for the classical clathrin-mediated endocytosis pathway. Both receptors were tracked by live-cell imaging in the presence or absence of inhibitors that established their differential dependence on specific endocytic adaptor proteins. The topology of antigen-bound FcεRI, clathrin, dynamin, Arf6 and Eps15-positive structures were analyzed by 2D and 3D immunoelectron microscopy techniques, revealing their remarkable spatial relationships and unique geometry. We conclude that the mast cell plasma membrane has multiple specialized domains for endocytosis. Their close proximity might reflect shared components, such as lipids and adaptor proteins, that facilitate inward membrane curvature. Intersections between these specialized domains might represent sorting stations that direct cargo to specific endocytic pathways.


Assuntos
Clatrina/metabolismo , Endocitose , Mastócitos/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Dinaminas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mastócitos/química , Transporte Proteico , Ratos
9.
Cell Tissue Res ; 360(1): 71-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25620410

RESUMO

Since their introduction to biological imaging, quantum dots (QDs) have progressed from a little known, but attractive, technology to one that has gained broad application in many areas of biology. The versatile properties of these fluorescent nanoparticles have allowed investigators to conduct biological studies with extended spatiotemporal capabilities that were previously not possible. In this review, we focus on QD applications that provide enhanced quantitative information concerning protein dynamics and localization, including single particle tracking and immunohistochemistry, and finish by examining the prospects of upcoming applications, such as correlative light and electron microscopy and super-resolution. Advances in single molecule imaging, including multi-color and three-dimensional QD tracking, have provided new insights into the mechanisms of cell signaling and protein trafficking. New forms of QD tracking in vivo have allowed the observation of biological processes at molecular level resolution in the physiological context of the whole animal. Further methodological development of multiplexed QD-based immunohistochemistry assays should enable more quantitative analysis of key proteins in tissue samples. These advances highlight the unique quantitative data sets that QDs can provide to further our understanding of biological and disease processes.


Assuntos
Imagem Molecular/métodos , Especificidade de Órgãos , Pontos Quânticos/química , Animais , Sobrevivência Celular , Corantes Fluorescentes/química , Imuno-Histoquímica
10.
Stem Cells ; 32(10): 2767-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24905975

RESUMO

There is accumulating evidence that mesenchymal stem cells (MSCs) have their origin as perivascular cells (PVCs) in vivo, but precisely identifying them has been a challenge, as they have no single definitive marker and are rare. We have developed a fluorescent transgenic vertebrate model in which PVC can be visualized in vivo based upon sdf1 expression in the zebrafish. Prospective isolation and culture of sdf1(DsRed) PVC demonstrated properties consistent with MSC including prototypical cell surface marker expression; mesodermal differentiation into adipogenic, osteogenic, and chondrogenic lineages; and the ability to support hematopoietic cells. Global proteomic studies performed by two-dimensional liquid chromatography and tandem mass spectrometry revealed a high degree of similarity to human MSC (hMSC) and discovery of novel markers (CD99, CD151, and MYOF) that were previously unknown to be expressed by hMSC. Dynamic in vivo imaging during fin regeneration showed that PVC may arise from undifferentiated mesenchyme providing evidence of a PVC-MSC relationship. This is the first model, established in zebrafish, in which MSC can be visualized in vivo and will allow us to better understand their function in a native environment.


Assuntos
Vasos Sanguíneos/citologia , Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mesoderma/citologia , Proteômica , Regeneração , Transgenes
11.
J Cell Sci ; 125(Pt 11): 2571-80, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22685332

RESUMO

A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.


Assuntos
Estruturas Celulares/ultraestrutura , Imageamento Tridimensional/métodos , Imageamento Tridimensional/tendências , Animais , Tomografia com Microscopia Eletrônica , Humanos , Microscopia Confocal , Microscopia de Fluorescência
12.
Adv Funct Mater ; 24(30): 4796-4803, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25798080

RESUMO

While semiconductor quantum dots (QDs) have been used successfully in numerous single particle tracking (SPT) studies due to their high photoluminescence efficiency, photostability, and broad palette of emission colors, conventional QDs exhibit fluorescence intermittency or 'blinking,' which causes ambiguity in particle trajectory analysis and limits tracking duration. Here, non-blinking 'giant' quantum dots (gQDs) are exploited to study IgE-FcεRI receptor dynamics in live cells using a confocal-based 3D SPT microscope. There is a 7-fold increase in the probability of observing IgE-FcεRI for longer than 1 min using the gQDs compared to commercially available QDs. A time-gated photon-pair correlation analysis is implemented to verify that selected SPT trajectories are definitively from individual gQDs and not aggregates. The increase in tracking duration for the gQDs allows the observation of multiple changes in diffusion rates of individual IgE-FcεRI receptors occurring on long (>1 min) time scales, which are quantified using a time-dependent diffusion coefficient and hidden Markov modeling. Non-blinking gQDs should become an important tool in future live cell 2D and 3D SPT studies, especially in cases where changes in cellular dynamics are occurring on the time scale of several minutes.

13.
Chemphyschem ; 15(4): 687-695, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24194371

RESUMO

The noncovalent equilibrium activation of a fluorogenic malachite green dye and its cognate fluorogen-activating protein (FAP) can produce a sparse labeling distribution of densely tagged genetically encoded proteins, enabling single molecule detection and super-resolution imaging in fixed and living cells. These sparse labeling conditions are achieved by control of the dye concentration in the milieu, and do not require any photoswitching or photoactivation. The labeling is achieved by using physiological buffers and cellular media, in which additives and switching buffers are not required to obtain super-resolution images. We evaluate the super-resolution properties and images obtained from a selected FAP clone fused to actin, and show that the photon counts per object are between those typically reported for fluorescent proteins and switching-dye pairs, resulting in 10-30 nm localization precision per object. This labeling strategy complements existing approaches, and may simplify multicolor labeling of cellular structures.


Assuntos
Anticorpos/química , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Corantes de Rosanilina/química , Anticorpos/genética
14.
Nat Commun ; 15(1): 5019, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866746

RESUMO

Rapid, high-resolution volumetric imaging without moving heavy objectives or disturbing delicate samples remains challenging. Pupil-matched remote focusing offers a promising solution for high NA systems, but the fluorescence signal's incoherent and unpolarized nature complicates its application. Thus, remote focusing is mainly used in the illumination arm with polarized laser light to improve optical coupling. Here, we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light, lets them pass through the remote focusing module separately, and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks with an axial range of 70 µm and camera-limited acquisition speed. Owing to its general nature, we believe this technique will find its application in many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging, such as confocal, 2-photon, and light sheet variants.

15.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659774

RESUMO

The ability to image at high speeds is necessary for biological imaging to capture fast-moving or transient events or to efficiently image large samples. However, due to the lack of rigidity of biological specimens, carrying out fast, high-resolution volumetric imaging without moving and agitating the sample has been a challenging problem. Pupil-matched remote focusing has been promising for high NA imaging systems with their low aberrations and wavelength independence, making it suitable for multicolor imaging. However, owing to the incoherent and unpolarized nature of the fluorescence signal, manipulating this emission light through remote focusing is challenging. Therefore, remote focusing has been primarily limited to the illumination arm, using polarized laser light to facilitate coupling in and out of the remote focusing optics. Here, we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light, lets them pass through the remote focusing module separately, and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks with an axial range of 70 µm and camera-limited acquisition speed. Owing to its general nature, we believe this technique will find its application in many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging, such as confocal, 2-photon, and light sheet variants.

16.
Cell Rep ; 43(1): 113603, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38117650

RESUMO

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with important roles in many cellular processes as well as in cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. How these dimers relate to higher-order EGFR oligomers seen in cell membranes, however, remains unclear. Here, we used single-particle tracking (SPT) and Förster resonance energy transfer imaging to examine how each domain of EGFR contributes to receptor oligomerization and the rate of receptor diffusion in the cell membrane. Although the extracellular region of EGFR is sufficient to drive receptor dimerization, we find that the EGF-induced EGFR slowdown seen by SPT requires higher-order oligomerization-mediated in part by the intracellular tyrosine kinase domain when it adopts an active conformation. Our data thus provide important insight into the interactions required for higher-order EGFR assemblies involved in EGF signaling.


Assuntos
Fator de Crescimento Epidérmico , Receptores ErbB , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Membrana Celular/metabolismo , Fosforilação , Transdução de Sinais
17.
Biophys J ; 105(6): 1533-43, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24048005

RESUMO

ErbB1 overexpression is strongly linked to carcinogenesis, motivating better understanding of erbB1 dimerization and activation. Recent single-particle-tracking data have provided improved measures of dimer lifetimes and strong evidence that transient receptor coconfinement promotes repeated interactions between erbB1 monomers. Here, spatial stochastic simulations explore the potential impact of these parameters on erbB1 phosphorylation kinetics. This rule-based mathematical model incorporates structural evidence for conformational flux of the erbB1 extracellular domains, as well as asymmetrical orientation of erbB1 cytoplasmic kinase domains during dimerization. The asymmetric dimer model considers the theoretical consequences of restricted transactivation of erbB1 receptors within a dimer, where the N-lobe of one monomer docks with the C-lobe of the second monomer and triggers its catalytic activity. The dynamic nature of the erbB1 phosphorylation state is shown by monitoring activation states of individual monomers as they diffuse, bind, and rebind after ligand addition. The model reveals the complex interplay between interacting liganded and nonliganded species and the influence of their distribution and abundance within features of the membrane landscape.


Assuntos
Receptores ErbB/metabolismo , Modelos Biológicos , Membrana Celular/metabolismo , Receptores ErbB/química , Ligantes , Fosforilação , Estrutura Terciária de Proteína , Análise Espacial , Processos Estocásticos
18.
Cancers (Basel) ; 15(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37296882

RESUMO

Dysregulated cellular processes drive malignant transformation, tumor progression, and metastasis, and affect responses to therapies [...].

19.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609336

RESUMO

Immunoreceptor tyrosine-based activation motif (ITAM)-containing Fc receptors are critical components of the innate and adaptive immune systems. FcεRI mediates the allergic response via crosslinking of IgE-bound receptors by multivalent antigens. Yet, the underlying molecular mechanisms that govern the response of FcεRI to specific antigens remain poorly understood. We compared responses induced by two antigens with distinct geometries, high valency DNP-BSA and trivalent DF3, and found unique secretion and receptor phosphorylation profiles that are due to differential recruitment of Lyn and SHIP1. To understand how these two antigens can cause such markedly different outcomes, we used direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging combined with Bayesian Grouping of Localizations (BaGoL) analysis to compare the nanoscale characteristics of FcεRI aggregates. DF3 aggregates were found to be smaller and more densely packed than DNP-BSA aggregates. Using lifetime-based Förster resonance energy transfer (FRET) measurements, we discovered that FcεRI subunits undergo structural rearrangements upon crosslinking with either antigen, and in response to interaction with monovalent antigen presented on a supported lipid bilayer. The extent of conformational change is positively correlated with signaling efficiency. Finally, we provide evidence for forces in optimizing FcεRI signaling, such that immobilizing DF3 on a rigid surface promoted degranulation while increasing DNP-BSA flexibility lowered degranulation. These results provide a link between the physical attributes of allergens, including size, shape, valency, and flexibility, and FcεRI signaling strength. Thus, the antigen modulates mast cell outcomes by creating unique aggregate geometries that tune FcεRI conformation, phosphorylation and signaling partner recruitment.

20.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886461

RESUMO

The ability to image at high speeds is necessary in biological imaging to capture fast-moving or transient events or to efficiently image large samples. However, due to the lack of rigidity of biological specimens, carrying out fast, high-resolution volumetric imaging without moving and agitating the sample has been a challenging problem. Pupil-matched remote focusing has been promising for high NA imaging systems with their low aberrations and wavelength independence, making it suitable for multicolor imaging. However, owing to the incoherent and unpolarized nature of the fluorescence signal, manipulating this emission light through remote focusing is challenging. Therefore, remote focusing has been primarily limited to the illumination arm, using polarized laser light for facilitating coupling in and out of the remote focusing optics. Here we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light and lets them pass through the remote focusing module separately and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks, with an axial range of 70 µm and camera limited acquisition speed. Owing to its general nature, we believe this technique will find its application to many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging such as confocal, 2-photon, and light sheet variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA