Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Pathog ; 20(2): e1011993, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300953

RESUMO

Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Nucleotídeos de Uracila , Animais , Camundongos , Humanos , Vírus da Influenza A/genética , Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H1N1/genética , Furões , Infecções por Orthomyxoviridae/tratamento farmacológico
2.
PLoS Pathog ; 19(4): e1011342, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068076

RESUMO

Influenza outbreaks are associated with substantial morbidity, mortality and economic burden. Next generation antivirals are needed to treat seasonal infections and prepare against zoonotic spillover of avian influenza viruses with pandemic potential. Having previously identified oral efficacy of the nucleoside analog 4'-Fluorouridine (4'-FlU, EIDD-2749) against SARS-CoV-2 and respiratory syncytial virus (RSV), we explored activity of the compound against seasonal and highly pathogenic influenza (HPAI) viruses in cell culture, human airway epithelium (HAE) models, and/or two animal models, ferrets and mice, that assess IAV transmission and lethal viral pneumonia, respectively. 4'-FlU inhibited a panel of relevant influenza A and B viruses with nanomolar to sub-micromolar potency in HAE cells. In vitro polymerase assays revealed immediate chain termination of IAV polymerase after 4'-FlU incorporation, in contrast to delayed chain termination of SARS-CoV-2 and RSV polymerase. Once-daily oral treatment of ferrets with 2 mg/kg 4'-FlU initiated 12 hours after infection rapidly stopped virus shedding and prevented transmission to untreated sentinels. Treatment of mice infected with a lethal inoculum of pandemic A/CA/07/2009 (H1N1)pdm09 (pdmCa09) with 4'-FlU alleviated pneumonia. Three doses mediated complete survival when treatment was initiated up to 60 hours after infection, indicating a broad time window for effective intervention. Therapeutic oral 4'-FlU ensured survival of animals infected with HPAI A/VN/12/2003 (H5N1) and of immunocompromised mice infected with pdmCa09. Recoverees were protected against homologous reinfection. This study defines the mechanistic foundation for high sensitivity of influenza viruses to 4'-FlU and supports 4'-FlU as developmental candidate for the treatment of seasonal and pandemic influenza.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Vírus Sincicial Respiratório Humano , Humanos , Animais , Camundongos , Influenza Humana/tratamento farmacológico , Furões , SARS-CoV-2 , Infecções por Orthomyxoviridae/patologia
3.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37790571

RESUMO

Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and SARS-CoV-2, was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AM). In SFB-negative mice, AM were quickly depleted as RVI progressed. In contrast, AM from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AM from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AM into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity. One sentence summary: Intestinal segmented filamentous bacteria reprogram alveolar macrophages promoting nonphlogistic defense against respiratory viruses.

4.
Cell Host Microbe ; 32(3): 335-348.e8, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38295788

RESUMO

Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AMs). In SFB-negative mice, AMs were quickly depleted as RVI progressed. In contrast, AMs from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AMs from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AMs into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity.


Assuntos
Microbioma Gastrointestinal , Viroses , Animais , Camundongos , Macrófagos Alveolares , Fagocitose , Interferons , Bactérias
5.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826222

RESUMO

The immunocompromised are at high risk of prolonged SARS-CoV-2 infection and progression to severe COVID-19. However, efficacy of late-onset direct-acting antiviral (DAA) therapy with therapeutics in clinical use and experimental drugs to mitigate persistent viral replication is unclear. In this study, we employed an immunocompromised mouse model, which supports prolonged replication of SARS-CoV-2 to explore late-onset treatment options. Tandem immuno-depletion of CD4 + and CD8 + T cells in C57BL/6 mice followed by infection with SARS-CoV-2 variant of concern (VOC) beta B.1.351 resulted in prolonged infection with virus replication for five weeks after inoculation. Early-onset treatment with nirmatrelvir/ritonavir (paxlovid) or molnupiravir was only moderately efficacious, whereas the experimental therapeutic 4'-fluorourdine (4'-FlU, EIDD-2749) significantly reduced virus load in upper and lower respiratory compartments four days post infection (dpi). All antivirals significantly lowered virus burden in a 7-day treatment regimen initiated 14 dpi, but paxlovid-treated animals experienced rebound virus replication in the upper respiratory tract seven days after treatment end. Viral RNA was detectable 28 dpi in paxlovid-treated animals, albeit not in the molnupiravir or 4'-FlU groups, when treatment was initiated 14 dpi and continued for 14 days. Low-level virus replication continued 35 dpi in animals receiving vehicle but had ceased in all treatment groups. These data indicate that late-onset DAA therapy significantly shortens the duration of persistent virus replication in an immunocompromised host, which may have implications for clinical use of antiviral therapeutics to alleviate the risk of progression to severe disease in highly vulnerable patients. Importance: Four years after the onset of the global COVID-19 pandemic, the immunocompromised are at greatest risk of developing life-threatening severe disease. However, specific treatment plans for this most vulnerable patient group have not yet been developed. Employing a CD4 + and CD8 + T cell-depleted immunocompromised mouse model of SARS-CoV-2 infection, we explored therapeutic options of persistent infections with standard-of-care paxlovid, molnupiravir, and the experimental therapeutic 4'-FlU. Late-onset treatment initiated 14 days after infection was efficacious, but only 4'-FlU was rapidly sterilizing. No treatment-experienced viral variants with reduced susceptibility to the drugs emerged, albeit virus replication rebounded in animals of the paxlovid group after treatment end. This study supports the use of direct-acting antivirals for late-onset management of persistent SARS-CoV-2 infection in immunocompromised hosts. However, treatment courses likely require to be extended for maximal therapeutic benefit, calling for appropriately powered clinical trials to meet the specific needs of this patient group.

6.
Nat Commun ; 15(1): 1189, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331906

RESUMO

Measles cases have surged pre-COVID-19 and the pandemic has aggravated the problem. Most measles-associated morbidity and mortality arises from destruction of pre-existing immune memory by measles virus (MeV), a paramyxovirus of the morbillivirus genus. Therapeutic measles vaccination lacks efficacy, but little is known about preserving immune memory through antivirals and the effect of respiratory disease history on measles severity. We use a canine distemper virus (CDV)-ferret model as surrogate for measles and employ an orally efficacious paramyxovirus polymerase inhibitor to address these questions. A receptor tropism-intact recombinant CDV with low lethality reveals an 8-day advantage of antiviral treatment versus therapeutic vaccination in maintaining immune memory. Infection of female ferrets with influenza A virus (IAV) A/CA/07/2009 (H1N1) or respiratory syncytial virus (RSV) four weeks pre-CDV causes fatal hemorrhagic pneumonia with lung onslaught by commensal bacteria. RNAseq identifies CDV-induced overexpression of trefoil factor (TFF) peptides in the respiratory tract, which is absent in animals pre-infected with IAV. Severe outcomes of consecutive IAV/CDV infections are mitigated by oral antivirals even when initiated late. These findings validate the morbillivirus immune amnesia hypothesis, define measles treatment paradigms, and identify priming of the TFF axis through prior respiratory infections as risk factor for exacerbated morbillivirus disease.


Assuntos
Vírus da Cinomose Canina , Vírus da Influenza A Subtipo H1N1 , Sarampo , Animais , Feminino , Furões , Sarampo/complicações , Vírus do Sarampo/genética , Vírus da Cinomose Canina/genética , Antivirais/farmacologia , Antivirais/uso terapêutico
7.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37905070

RESUMO

Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD 50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU. Author Summary: Reduced sensitivity to FDA-approved influenza drugs is a major obstacle to effective antiviral therapy. We have previously demonstrated oral efficacy of a novel clinical candidate drug, 4'-FlU, against seasonal, pandemic, and highly pathogenic avian influenza viruses. In this study, we have determined possible routes of influenza virus escape from 4'-FlU and addressed whether resistance imposes a viral fitness penalty, affecting pathogenicity or ability to transmit. We identified three distinct clusters of mutations that lead to moderately reduced viral sensitivity to the drug. Testing of resistant variants against two chemically unrelated nucleoside analog inhibitors of influenza virus, conditionally approved favipiravir and the broad-spectrum SARS-CoV-2 drug molnupiravir, revealed cross-resistance of one cluster with favipiravir, whereas no viral escape from molnupiravir was noted. We found that the resistant variants are severely attenuated in mice, impaired in their ability to invade the lower respiratory tract and cause viral pneumonia in ferrets, and transmission-defective or compromised. We could fully mitigate lethal infection of mice with the resistant variants with standard or 5-fold elevated oral dose of 4'-FlU. These results demonstrate that partial viral escape from 4'-FlU is feasible in principle, but escape mutation clusters are unlikely to reach clinical significance or persist in circulating influenza virus strains.

8.
Nat Commun ; 14(1): 4731, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550333

RESUMO

Therapeutic options against SARS-CoV-2 are underutilized. Two oral drugs, molnupiravir and paxlovid (nirmatrelvir/ritonavir), have received emergency use authorization. Initial trials suggested greater efficacy of paxlovid, but recent studies indicated comparable potency in older adults. Here, we compare both drugs in two animal models; the Roborovski dwarf hamster model for severe COVID-19-like lung infection and the ferret SARS-CoV-2 transmission model. Dwarf hamsters treated with either drug survive VOC omicron infection with equivalent lung titer reduction. Viral RNA copies in the upper respiratory tract of female ferrets receiving 1.25 mg/kg molnupiravir twice-daily are not significantly reduced, but infectious titers are lowered by >2 log orders and direct-contact transmission is stopped. Female ferrets dosed with 20 or 100 mg/kg nirmatrelvir/ritonavir twice-daily show 1-2 log order reduction of viral RNA copies and infectious titers, which correlates with low nirmatrelvir exposure in nasal turbinates. Virus replication resurges towards nirmatrelvir/ritonavir treatment end and virus transmits efficiently (20 mg/kg group) or partially (100 mg/kg group). Prophylactic treatment with 20 mg/kg nirmatrelvir/ritonavir does not prevent spread from infected ferrets, but prophylactic 5 mg/kg molnupiravir or 100 mg/kg nirmatrelvir/ritonavir block productive transmission. These data confirm reports of similar efficacy in older adults and inform on possible epidemiologic benefit of antiviral treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Feminino , Cricetinae , Tratamento Farmacológico da COVID-19 , Furões , Ritonavir/farmacologia , Ritonavir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais
9.
DNA Cell Biol ; 41(8): 699-704, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35788144

RESUMO

The COVID-19 pandemic has highlighted the urgent need for the development of broad-spectrum antivirals to enhance preparedness against future spillover of zoonotic viruses with pandemic potential into the human population. Currently, the direct-acting orally available SARS-CoV-2 inhibitors molnupiravir and paxlovid are approved for human use under emergency use authorization. A promising next-generation therapeutic candidate is the orally available ribonucleoside analog 4'-fluorouridine (4'-FlU) that had potent antiviral efficacy against different viral targets, including SARS-CoV-2 in human organoids and animal models. Although a nucleoside analog inhibitor such as molnupiravir that targets the viral RNA-dependent RNA polymerase (RdRP) complex, 4'-FlU showed a distinct mechanism of activity, delayed chain termination, compared with molnupiravir's induction of viral error catastrophe. This review will focus on some currently approved and emerging medicines developed against SARS-CoV-2, examining their potential to form a pharmacological first-line defense against zoonotic viruses with pandemic potential.


Assuntos
Tratamento Farmacológico da COVID-19 , Pandemias , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , SARS-CoV-2 , Nucleotídeos de Uracila
10.
Sci Adv ; 8(25): eabo2236, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749502

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory infections in infants and the immunocompromised, yet no efficient therapeutic exists. We have identified the AVG class of allosteric inhibitors of RSV RNA synthesis. Here, we demonstrate through biolayer interferometry and in vitro RNA-dependent RNA polymerase (RdRP) assays that AVG compounds bind to the viral polymerase, stalling the polymerase in initiation conformation. Resistance profiling revealed a unique escape pattern, suggesting a discrete docking pose. Affinity mapping using photoreactive AVG analogs identified the interface of polymerase core, capping, and connector domains as a molecular target site. A first-generation lead showed nanomolar potency against RSV in human airway epithelium organoids but lacked in vivo efficacy. Docking pose-informed synthetic optimization generated orally efficacious AVG-388, which showed potent efficacy in the RSV mouse model when administered therapeutically. This study maps a druggable target in the RSV RdRP and establishes clinical potential of the AVG chemotype against RSV disease.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Animais , Humanos , Camundongos , Conformação Molecular , RNA Polimerase Dependente de RNA , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/genética
11.
bioRxiv ; 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35169793

RESUMO

SARS-CoV-2 variants of concern (VOC) have triggered distinct infection waves in the coronavirus disease 2019 (COVID-19) pandemic, culminating in currently all-time high incidence rates of VOC omicron. Orally available direct-acting antivirals such as molnupiravir promise to improve disease management and limit SARS-CoV-2 spread. However, molnupiravir efficacy against VOC delta was questioned based on clinical trial results and its potency against omicron is unknown. This study evaluates molnupiravir against a panel of relevant VOC in three efficacy models: primary human airway epithelium organoids, the ferret model of upper respiratory disease, and a lethal Roborovski dwarf hamster efficacy model of severe COVID-19-like acute lung injury. All VOC were equally efficiently inhibited by molnupiravir in cultured cells and organoids. Treatment consistently reduced upper respiratory VOC shedding in ferrets and prevented viral transmission. Pathogenicity in the dwarf hamsters was VOC-dependent and highest for gamma, omicron, and delta with fulminant lung histopathology. Oral molnupiravir started 12 hours after infection resulted in complete survival of treated dwarf hamsters independent of challenge VOC. However, reduction in lung virus differed VOC-dependently, ranging from one (delta) to four (gamma) orders of magnitude compared to vehicle-treated animals. Dwarf hamsters infected with VOC omicron showed significant individual variation in response to treatment. Virus load reduction was significant in treated males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir seen in human trials and alerts that therapeutic benefit of approved antivirals must be continuously reassessed in vivo as new VOC emerge.

12.
Science ; 375(6577): 161-167, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-34855509

RESUMO

The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and older adults. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with high selectivity index in cells and human airway epithelia organoids. Polymerase inhibition within in vitro RNA-dependent RNA polymerase assays established for RSV and SARS-CoV-2 revealed transcriptional stalling after incorporation. Once-daily oral treatment was highly efficacious at 5 milligrams per kilogram (mg/kg) in RSV-infected mice or 20 mg/kg in ferrets infected with different SARS-CoV-2 variants of concern, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2, and related RNA virus infections.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Nucleotídeos de Uracila/farmacologia , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/metabolismo , COVID-19/virologia , Linhagem Celular , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Modelos Animais de Doenças , Feminino , Furões , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mononegavirais/efeitos dos fármacos , Mononegavirais/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Transcrição Gênica , Nucleotídeos de Uracila/administração & dosagem , Nucleotídeos de Uracila/metabolismo , Replicação Viral/efeitos dos fármacos
13.
Nat Commun ; 13(1): 4416, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906230

RESUMO

SARS-CoV-2 variants of concern (VOC) have triggered infection waves. Oral antivirals such as molnupiravir promise to improve disease management, but efficacy against VOC delta was questioned and potency against omicron is unknown. This study evaluates molnupiravir against VOC in human airway epithelium organoids, ferrets, and a lethal Roborovski dwarf hamster model of severe COVID-19-like lung injury. VOC were equally inhibited by molnupiravir in cells and organoids. Treatment reduced shedding in ferrets and prevented transmission. Pathogenicity in dwarf hamsters was VOC-dependent and highest for delta, gamma, and omicron. All molnupiravir-treated dwarf hamsters survived, showing reduction in lung virus load from one (delta) to four (gamma) orders of magnitude. Treatment effect size varied in individual dwarf hamsters infected with omicron and was significant in males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir in human trials and alerts that benefit must be reassessed in vivo as VOC evolve.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Citidina/análogos & derivados , Furões , Humanos , Hidroxilaminas , Pulmão , Masculino
14.
bioRxiv ; 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36451893

RESUMO

Despite the continued spread of SARS-CoV-2 and emergence of variants of concern (VOC) that are capable of escaping preexisting immunity, therapeutic options are underutilized. In addition to preventing severe disease in high-risk patients, antivirals may contribute to interrupting transmission chains. The FDA has granted emergency use authorizations for two oral drugs, molnupiravir and paxlovid. Initial clinical trials suggested an efficacy advantage of paxlovid, giving it a standard-of-care-like status in the United States. However, recent retrospective clinical studies suggested a more comparable efficacy of both drugs in preventing complicated disease and case-fatalities in older adults. For a direct efficacy comparison under controlled conditions, we assessed potency of both drugs against SARS-CoV-2 in two relevant animal models; the Roborovski dwarf hamster model for severe COVID-19 in high-risk patients and the ferret model of upper respiratory tract disease and transmission. After infection of dwarf hamsters with VOC omicron, paxlovid and molnupiravir were efficacious in mitigating severe disease and preventing death. However, a pharmacokinetics-confirmed human equivalent dose of paxlovid did not significantly reduce shed SARS-CoV-2 titers in ferrets and failed to block virus transmission to untreated direct-contact ferrets, whereas transmission was fully suppressed in a group of animals treated with a human-equivalent dose of molnupiravir. Prophylactic administration of molnupiravir to uninfected ferrets in direct contact with infected animals blocked productive SARS-CoV-2 transmission, whereas all contacts treated with prophylactic paxlovid became infected. These data confirm retrospective reports of similar therapeutic benefit of both drugs for older adults, and reveal that treatment with molnupiravir, but not paxlovid, may be suitable to reduce the risk of SARS-CoV-2 transmission.

15.
Gut Microbes ; 14(1): 2105609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915556

RESUMO

The gut microbiome is intricately coupled with immune regulation and metabolism, but its role in Coronavirus Disease 2019 (COVID-19) is not fully understood. Severe and fatal COVID-19 is characterized by poor anti-viral immunity and hypercoagulation, particularly in males. Here, we define multiple pathways by which the gut microbiome protects mammalian hosts from SARS-CoV-2 intranasal infection, both locally and systemically, via production of short-chain fatty acids (SCFAs). SCFAs reduced viral burdens in the airways and intestines by downregulating the SARS-CoV-2 entry receptor, angiotensin-converting enzyme 2 (ACE2), and enhancing adaptive immunity via GPR41 and 43 in male animals. We further identify a novel role for the gut microbiome in regulating systemic coagulation response by limiting megakaryocyte proliferation and platelet turnover via the Sh2b3-Mpl axis. Taken together, our findings have unraveled novel functions of SCFAs and fiber-fermenting gut bacteria to dampen viral entry and hypercoagulation and promote adaptive antiviral immunity.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Animais , Antivirais/uso terapêutico , Ácidos Graxos Voláteis , Masculino , Mamíferos/metabolismo , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
16.
bioRxiv ; 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34031658

RESUMO

The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and the elderly. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and SARS-CoV-2 with high selectivity index in cells and well-differentiated human airway epithelia. Polymerase inhibition in in vitro RdRP assays established for RSV and SARS-CoV-2 revealed transcriptional pauses at positions i or i +3/4 post-incorporation. Once-daily oral treatment was highly efficacious at 5 mg/kg in RSV-infected mice or 20 mg/kg in ferrets infected with SARS-CoV-2 WA1/2020 or variant-of-concern (VoC) isolate CA/2020, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2 and related RNA virus infections. ONE-SENTENCE SUMMARY: 4'-Fluorouridine is an orally available ribonucleoside analog that efficiently treats RSV and SARS-CoV-2 infections in vivo .

17.
Nat Commun ; 12(1): 6415, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741049

RESUMO

Remdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Pró-Fármacos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Adenosina/farmacologia , Animais , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Feminino , Furões , Humanos , SARS-CoV-2/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA