Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542087

RESUMO

Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.


Assuntos
Ácido Ascórbico , Infarto do Miocárdio , Humanos , Espécies Reativas de Oxigênio , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Vitamina E/uso terapêutico , Estresse Oxidativo , Vitaminas , Infarto do Miocárdio/tratamento farmacológico
2.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176085

RESUMO

Extracellular collagen remodeling is one of the central mechanisms responsible for the structural and compositional coherence of myocardium in patients undergoing myocardial infarction (MI). Activated primary cardiac fibroblasts following myocardial infarction are extensively investigated to establish anti-fibrotic therapies to improve left ventricular remodeling. To systematically assess vitamin C functions as a potential modulator involved in collagen fibrillogenesis in an in vitro model mimicking heart tissue healing after MI. Mouse primary cardiac fibroblasts were isolated from wild-type C57BL/6 mice and cultured under normal and profibrotic (hypoxic + transforming growth factor beta 1) conditions on freshly prepared coatings mimicking extracellular matrix (ECM) remodeling during healing after an MI. At 10 µg/mL, vitamin C reprogramed the respiratory mitochondrial metabolism, which is effectively associated with a more increased accumulation of intracellular reactive oxygen species (iROS) than the number of those generated by mitochondrial reactive oxygen species (mROS). The mRNA/protein expression of subtypes I, III collagen, and fibroblasts differentiations markers were upregulated over time, particularly in the presence of vitamin C. The collagen substrate potentiated the modulator role of vitamin C in reinforcing the structure of types I and III collagen synthesis by reducing collagen V expression in a timely manner, which is important in the initiation of fibrillogenesis. Altogether, our study evidenced the synergistic function of vitamin C at an optimum dose on maintaining the equilibrium functionality of radical scavenger and gene transcription, which are important in the initial phases after healing after an MI, while modulating the synthesis of de novo collagen fibrils, which is important in the final stage of tissue healing.


Assuntos
Ácido Ascórbico , Infarto do Miocárdio , Camundongos , Animais , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Vitaminas/metabolismo , Remodelação Ventricular/fisiologia
3.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176067

RESUMO

Phospholipids are major components of cell membranes with complex structures, high heterogeneity and critical biological functions and have been used since ancient times to treat cardiovascular disease. Their importance and role were shadowed by the difficulty or incomplete available research methodology to study their biological presence and functionality. This review focuses on the current knowledge about the roles of phospholipids in the pathophysiology and therapy of cardiovascular diseases, which have been increasingly recognized. Used in singular formulation or in inclusive combinations with current drugs, phospholipids proved their positive and valuable effects not only in the protection of myocardial tissue, inflammation and fibrosis but also in angiogenesis, coagulation or cardiac regeneration more frequently in animal models as well as in human pathology. Thus, while mainly neglected by the scientific community, phospholipids present negligible side effects and could represent an ideal target for future therapeutic strategies in healing myocardial infarction. Acknowledging and understanding their mechanisms of action could offer a new perspective into novel therapeutic strategies for patients suffering an acute myocardial infarction, reducing the burden and improving the general social and economic outcome.


Assuntos
Infarto do Miocárdio , Fosfolipídeos , Animais , Humanos , Fosfolipídeos/metabolismo , Miocárdio/metabolismo , Inflamação/metabolismo , Cicatrização , Remodelação Ventricular
4.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361630

RESUMO

Cancer is a leading cause of death worldwide, with increasing numbers of new cases each year. For the vast majority of cancer patients, surgery is the most effective procedure for the complete removal of the malignant tissue. However, relapse due to the incomplete resection of the tumor occurs very often, as the surgeon must rely primarily on visual and tactile feedback. Intraoperative near-infrared imaging with pafolacianine is a newly developed technology designed for cancer detection during surgery, which has been proven to show excellent results in terms of safety and efficacy. Therefore, pafolacianine was approved by the U.S. Food and Drug Administration (FDA) on 29 November 2021, as an additional approach that can be used to identify malignant lesions and to ensure the total resection of the tumors in ovarian cancer patients. Currently, various studies have demonstrated the positive effects of pafolacianine's use in a wide variety of other malignancies, with promising results expected in further research. This review focuses on the applications of the FDA-approved pafolacianine for the accurate intraoperative detection of malignant tissues. The cancer-targeting fluorescent ligands can shift the paradigm of surgical oncology by enabling the visualization of cancer lesions that are difficult to detect by inspection or palpation. The enhanced detection and removal of hard-to-detect cancer tissues during surgery will lead to remarkable outcomes for cancer patients and society, specifically by decreasing the cancer relapse rate, increasing the life expectancy and quality of life, and decreasing future rates of hospitalization, interventions, and costs.


Assuntos
Corantes Fluorescentes , Neoplasias Ovarianas , Feminino , Humanos , Qualidade de Vida , Recidiva Local de Neoplasia/induzido quimicamente , Neoplasias Ovarianas/patologia
5.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055054

RESUMO

Endothelial progenitor cells (EPCs) are involved in vascular repair and modulate properties of smooth muscle cells (SMCs) relevant for their contribution to neointima formation following injury. Considering the relevant role of the CXCL12-CXCR4 axis in vascular homeostasis and the potential of EPCs and SMCs to release CXCL12 and express CXCR4, we analyzed the engagement of the CXCL12-CXCR4 axis in various modes of EPC-SMC interaction relevant for injury- and lipid-induced atherosclerosis. We now demonstrate that the expression and release of CXCL12 is synergistically increased in a CXCR4-dependent mechanism following EPC-SMC interaction during co-cultivation or in response to recombinant CXCL12, thus establishing an amplifying feedback loop Additionally, mechanical injury of SMCs induces increased release of CXCL12, resulting in enhanced CXCR4-dependent recruitment of EPCs to SMCs. The CXCL12-CXCR4 axis is crucially engaged in the EPC-triggered augmentation of SMC migration and the attenuation of SMC apoptosis but not in the EPC-mediated increase in SMC proliferation. Compared to EPCs alone, the alliance of EPC-SMC is superior in promoting the CXCR4-dependent proliferation and migration of endothelial cells. When direct cell-cell contact is established, EPCs protect the contractile phenotype of SMCs via CXCL12-CXCR4 and reverse cholesterol-induced transdifferentiation toward a synthetic, macrophage-like phenotype. In conclusion we show that the interaction of EPCs and SMCs unleashes a CXCL12-CXCR4-based autoregulatory feedback loop promoting regenerative processes and mediating SMC phenotype control to potentially guard vascular homeostasis.


Assuntos
Vasos Sanguíneos/metabolismo , Quimiocina CXCL12/metabolismo , Células Progenitoras Endoteliais/metabolismo , Homeostase , Miócitos de Músculo Liso/metabolismo , Receptores CXCR4/metabolismo , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores , Movimento Celular , Células Cultivadas , Quimiocina CXCL12/genética , Expressão Gênica , Humanos , Neointima/genética , Neointima/metabolismo , Fenótipo , Ligação Proteica , Receptores CXCR4/genética , Transdução de Sinais
6.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293490

RESUMO

Sudden cardiac death due to arrhythmias, such as atrial fibrillation or ventricular tachycardia, account for 15-20% of all deaths. Myocardial infarction increases the burden of atrial fibrillation and ventricular tachycardia by structural and electrical remodeling of the heart. The current management of new-onset atrial fibrillation includes electric cardioversion with very high conversion rates and pharmacologic cardioversion, with less a than 50% conversion rate. If atrial fibrillation cannot be converted, the focus becomes the control of the symptoms ensuring a constant rhythm and rate control, without considering other contributory factors such as autonomic imbalance. Recently, a huge success was obtained by developing ablation techniques or addressing the vagal nerve stimulation. On the other hand, ventricular tachycardia is more sensitive to drug therapies. However, in cases of non-responsiveness to drugs, the usual therapeutic choice is represented by stereotactic ablative therapy or catheter ablation. This review focuses on these newly developed strategies for treatment of arrhythmias in clinical practice, specifically on vernakalant and low-level tragus stimulation for atrial fibrillation and stereotactic ablative therapy for drug-refractory ventricular tachycardia. These therapies are important for the significant improvement of the management of atrial fibrillation and ventricular tachycardia, providing: (1) a safer profile than current therapies, (2) higher success rate than current solutions, (3) low cost of delivery.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Taquicardia Ventricular , Humanos , Fibrilação Atrial/tratamento farmacológico , Taquicardia Ventricular/tratamento farmacológico , Cardioversão Elétrica , Morte Súbita Cardíaca , Antiarrítmicos/uso terapêutico
7.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498897

RESUMO

Myocardial infarction is remains the leading cause of death in developed countries. Recent data show that the composition of the extracellular matrix might differ despite similar heart function and infarction sizes. Because collagen is the main component of the extracellular matrix, we hypothesized that changes in inflammatory cell recruitment influence the synthesis of different collagen subtypes in myofibroblasts, thus changing the composition of the scar. We found that neutrophils sustain the proliferation of fibroblasts, remodeling, differentiation, migration and inflammation, predominantly by IL-1 and PPARγ pathways (n = 3). They also significantly inhibit the mRNA expression of fibrillar collagen, maintaining a reduced stiffness in isolated myofibroblasts (n = 4-5). Reducing the neutrophil infiltration in CCR1-/- resulted in increased mRNA expression of collagen 11, moderate expression of collagen 19 and low expression of collagen 13 and 26 in the scar 4 weeks post infarction compared with other groups (n = 3). Mononuclear cells increased the synthesis of all collagen subtypes and upregulated the NF-kB, angiotensin II and PPARδ pathways (n = 3). They increased the synthesis of collagen subtypes 1, 3, 5, 16 and 23 but reduced the expression of collagens 5 and 16 (n = 3). CCR2-/- scar tissue showed higher levels of collagen 13 (n = 3), in association with a significant reduction in stiffness (n = 4-5). Upregulation of the inflammation-related genes in myofibroblasts mostly modulated the fibrillar collagen subtypes, with less effect on the FACIT, network-forming and globular subtypes (n = 3). The upregulation of proliferation and differentiation genes in myofibroblasts seemed to be associated only with the fibrillar collagen subtype, whereas angiogenesis-related genes are associated with fibrillar, network-forming and multiplexin subtypes. In conclusion, although we intend for our findings to deepen the understanding of the mechanism of healing after myocardial infarction and scar formation, the process of collagen synthesis is highly complex, and further intensive investigation is needed to put together all the missing puzzle pieces in this still incipient knowledge process.


Assuntos
Infarto do Miocárdio , Humanos , Infarto do Miocárdio/metabolismo , Cicatriz/patologia , Colágeno/genética , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , RNA Mensageiro/metabolismo , Miocárdio/metabolismo
8.
Int J Mol Sci ; 22(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067440

RESUMO

Myocardial infarction remains the most common cause of heart failure with adverse remodeling. MicroRNA (miR)155 is upregulated following myocardial infarction and represents a relevant regulatory factor for cardiac remodeling by engagement in cardiac inflammation, fibrosis and cardiomyocyte hypertrophy. Here, we investigated the role of miR155 in cardiac remodeling and dysfunction following myocardial infarction in a dyslipidemic mouse model. Myocardial infarction was induced in dyslipidemic apolipoprotein E-deficient (ApoE-/-) mice with and without additional miR155 knockout by ligation of the LAD. Four weeks later, echocardiography was performed to assess left ventricular (LV) dimensions and function, and mice were subsequently sacrificed for histological analysis. Echocardiography revealed no difference in LV ejection fractions, LV mass and LV volumes between ApoE-/- and ApoE-/-/miR155-/- mice. Histology confirmed comparable infarction size and unaltered neoangiogenesis in the myocardial scar. Notably, myofibroblast density was significantly decreased in ApoE-/-/miR155-/- mice compared to the control, but no difference was observed for total collagen deposition. Our findings reveal that genetic depletion of miR155 in a dyslipidemic mouse model of myocardial infarction does not reduce infarction size and consecutive heart failure but does decrease myofibroblast density in the post-ischemic scar.


Assuntos
MicroRNAs/genética , Infarto do Miocárdio/genética , Miofibroblastos/metabolismo , Função Ventricular Esquerda/genética , Animais , Modelos Animais de Doenças , Ecocardiografia/métodos , Fibrose/genética , Fibrose/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Volume Sistólico/genética , Remodelação Ventricular/genética
9.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575848

RESUMO

ApoE abnormality represents a well-known risk factor for cardiovascular diseases. Beyond its role in lipid metabolism, novel studies demonstrate a complex involvement of apoE in membrane homeostasis and signaling as well as in nuclear transcription. Due to the large spread of apoE isoforms in the human population, there is a need to understand the apoE's role in pathological processes. Our study aims to dissect the involvement of apoE in heart failure. We showed that apoE-deficient rats present multiple organ damages (kidney, liver, lung and spleen) besides the known predisposition for obesity and affected lipid metabolism (two-fold increase in tissular damages in liver and one-fold increase in kidney, lung and spleen). Heart tissue also showed significant morphological changes in apoE-/- rats, mostly after a high-fat diet. Interestingly, the right ventricle of apoE-/- rats fed a high-fat diet showed more damage and affected collagen content (~60% less total collagen content and double increase in collagen1/collagen3 ratio) compared with the left ventricle (no significant differences in total collagen content or collagen1/collagen3 ratio). In patients, we were able to find a correlation between the presence of ε4 allele and cardiomyopathy (χ2 = 10.244; p = 0.001), but also with right ventricle dysfunction with decreased TAPSE (15.3 ± 2.63 mm in ε4-allele-presenting patients vs. 19.8 ± 3.58 mm if the ε4 allele is absent, p < 0.0001*) and increased in systolic pulmonary artery pressure (50.44 ± 16.47 mmHg in ε4-allele-presenting patients vs. 40.68 ± 15.94 mmHg if the ε4 allele is absent, p = 0.0019). Our results confirm that the presence of the ε4 allele is a lipid-metabolism-independent risk factor for heart failure. Moreover, we show for the first time that the presence of the ε4 allele is associated with right ventricle dysfunction, implying different regulatory mechanisms of fibroblasts and the extracellular matrix in both ventricles. This is essential to be considered and thoroughly investigated before the design of therapeutical strategies for patients with heart failure.


Assuntos
Apolipoproteína E4/genética , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/fisiopatologia , Suscetibilidade a Doenças , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Alelos , Animais , Apolipoproteína E4/metabolismo , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/metabolismo , Dieta Hiperlipídica , Ecocardiografia , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Testes de Função Cardíaca , Humanos , Imuno-Histoquímica , Masculino , Mutação , Ratos , Disfunção Ventricular Direita/diagnóstico
10.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922385

RESUMO

Phosphatidylserines are known to sustain skeletal muscle activity during intense activity or hypoxic conditions, as well as preserve neurocognitive function in older patients. Our previous studies pointed out a potential cardioprotective role of phosphatidylserine in heart ischemia. Therefore, we investigated the effects of phosphatidylserine oral supplementation in a mouse model of acute myocardial infarction (AMI). We found out that phosphatidylserine increases, significantly, the cardiomyocyte survival by 50% in an acute model of myocardial ischemia-reperfusion. Similar, phosphatidylserine reduced significantly the infarcted size by 30% and improved heart function by 25% in a chronic model of AMI. The main responsible mechanism seems to be up-regulation of protein kinase C epsilon (PKC-ε), the main player of cardio-protection during pre-conditioning. Interestingly, if the phosphatidylserine supplementation is started before induction of AMI, but not after, it selectively inhibits neutrophil's activation, such as Interleukin 1 beta (IL-1ß) expression, without affecting the healing and fibrosis. Thus, phosphatidylserine supplementation may represent a simple way to activate a pre-conditioning mechanism and may be a promising novel strategy to reduce infarct size following AMI and to prevent myocardial injury during myocardial infarction or cardiac surgery. Due to the minimal adverse effects, further investigation in large animals or in human are soon possible to establish the exact role of phosphatidylserine in cardiac diseases.


Assuntos
Suplementos Nutricionais , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fosfatidilserinas/farmacologia , Disfunção Ventricular Esquerda/complicações , Remodelação Ventricular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular/fisiologia
11.
Semin Thromb Hemost ; 46(5): 545-552, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31096311

RESUMO

Ultrasound (US) imaging of heart and major arteries and veins is among the most frequently used diagnostic techniques applied in humans. Conventional cardiovascular US sessions include anatomical B-mode and functional M-, pulsed-wave- and Doppler mode, which have their limitations in both precise cardiac chambers' delineation and small vessel imaging. The introduction of contrast-enhanced US, employing microbubble suspensions as contrast agent, has enabled a better delineation of heart chambers, the visualization of myocardial microvasculature, and the atherosclerotic plaque neovascularization. Moreover, specific disease-related molecular tracers have been developed by modifying the microbubbles with targeting ligands directed to biological markers exposed to the luminal side of the blood vessels. Microbubble functionalization has enabled in vivo molecular US imaging of various stages of atherosclerosis, from plaque initiation to plaque vulnerability, and neointima formation following revascularization procedures. Furthermore, oscillating microbubbles have been used to mechanically dissolve thrombus material and may act as carriers of drugs and nucleic acids that are released locally by US pulses. This review article summarizes recent advances in functional and molecular US images and discusses therapeutic applications of microbubbles. The addressed topics include an overview on microbubble formats, microbubble detection methods, molecular targets of cardiovascular diseases, and the use of microbubbles for thrombolysis and drug delivery.


Assuntos
Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Microbolhas/uso terapêutico , Ultrassonografia/métodos , Doenças Cardiovasculares/mortalidade , Humanos , Análise de Sobrevida
12.
Arterioscler Thromb Vasc Biol ; 39(3): 387-401, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30651003

RESUMO

Objective- Atherosclerotic coronary artery disease is the leading cause of death worldwide, and current treatment options are insufficient. Using systems-level network cluster analyses on a large coronary artery disease case-control cohort, we previously identified PCSK3 (proprotein convertase subtilisin/kexin family member 3; FURIN) as a member of several coronary artery disease-associated pathways. Thus, our objective is to determine the role of FURIN in atherosclerosis. Approach and Results- In vitro, FURIN inhibitor treatment resulted in reduced monocyte migration and reduced macrophage and vascular endothelial cell inflammatory and cytokine gene expression. In vivo, administration of an irreversible inhibitor of FURIN, α-1-PDX (α1-antitrypsin Portland), to hyperlipidemic Ldlr-/- mice resulted in lower atherosclerotic lesion area and a specific reduction in severe lesions. Significantly lower lesional macrophage and collagen area, as well as systemic inflammatory markers, were observed. MMP2 (matrix metallopeptidase 2), an effector of endothelial function and atherosclerotic lesion progression, and a FURIN substrate was significantly reduced in the aorta of inhibitor-treated mice. To determine FURIN's role in vascular endothelial function, we administered α-1-PDX to Apoe-/- mice harboring a wire injury in the common carotid artery. We observed significantly decreased carotid intimal thickness and lower plaque cellularity, smooth muscle cell, macrophage, and inflammatory marker content, suggesting protection against vascular remodeling. Overexpression of FURIN in this model resulted in a significant 67% increase in intimal plaque thickness, confirming that FURIN levels directly correlate with atherosclerosis. Conclusions- We show that systemic inhibition of FURIN in mice decreases vascular remodeling and atherosclerosis. FURIN-mediated modulation of MMP2 activity may contribute to the atheroprotection observed in these mice.


Assuntos
Aterosclerose/prevenção & controle , Furina/antagonistas & inibidores , Placa Aterosclerótica/tratamento farmacológico , alfa 1-Antitripsina/uso terapêutico , Animais , Aorta/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Artéria Carótida Primitiva , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Indução Enzimática/efeitos dos fármacos , Furina/genética , Furina/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Metaloproteinase 2 da Matriz/análise , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Placa Aterosclerótica/patologia , Receptores de LDL/deficiência , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/patologia , Remodelação Vascular , alfa 1-Antitripsina/farmacologia
13.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456225

RESUMO

AIM: Recruitment of neutrophils to the heart following acute myocardial infarction (MI) initiates inflammation and contributes to adverse post-infarct left ventricular (LV) remodeling. However, therapeutic inhibition of neutrophil recruitment into the infarct zone has not been beneficial in MI patients, suggesting a possible dual role for neutrophils in inflammation and repair following MI. Here, we investigate the effect of neutrophils on cardiac fibroblast function following MI. Methods and Results: We found that co-incubating neutrophils with isolated cardiac fibroblasts enhanced the production of provisional extracellular matrix proteins and reduced collagen synthesis when compared to control or co-incubation with mononuclear cells. Furthermore, we showed that neutrophils are required to induce the transient up-regulation of transforming growth factor (TGF)-ß1 expression in fibroblasts, a key requirement for terminating the pro-inflammatory phase and allowing the reparatory phase to form a mature scar after MI. Conclusion: Neutrophils are essential for both initiation and termination of inflammatory events that control and modulate the healing process after MI. Therefore, one should exercise caution when testing therapeutic strategies to inhibit neutrophil recruitment into the infarct zone in MI patients.


Assuntos
Infarto do Miocárdio/metabolismo , Miofibroblastos/metabolismo , Neutrófilos/metabolismo , Cicatrização , Animais , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Fator de Crescimento Transformador beta/metabolismo
14.
Kidney Int ; 95(5): 1103-1119, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30827511

RESUMO

Platelet-derived growth factors (PDGF) have been implicated in kidney disease progression. We previously found that PDGF-C is upregulated at sites of renal fibrosis and that antagonism of PDGF-C reduces fibrosis in the unilateral ureteral obstruction model. We studied the role of PDGF-C in collagen 4A3-/- ("Alport") mice, a model of progressive renal fibrosis with greater relevance to human kidney disease. Alport mice were crossbred with PDGF-C-/- mice or administered a neutralizing PDGF-C antibody. Both PDGF-C deficiency and neutralization reduced serum creatinine and blood urea nitrogen levels and mitigated glomerular injury, renal fibrosis, and renal inflammation. Unexpectedly, systolic blood pressure was also reduced in both Alport and wild-type mice treated with a neutralizing PDGF-C antibody. Neutralization of PDGF-C reduced arterial wall thickness in the renal cortex of Alport mice. Aortic rings isolated from anti-PDGF-C-treated wildtype mice exhibited reduced tension and faster relaxation than those of untreated mice. In vitro, PDGF-C upregulated angiotensinogen in aortic tissue and in primary hepatocytes and induced nuclear factor κB (NFκB)/p65-binding to the angiotensinogen promoter in hepatocytes. Neutralization of PDGF-C suppressed transcript expression of angiotensinogen in Alport mice and angiotensin II receptor type 1 in Alport and wildtype mice. Finally, administration of neutralizing PDGF-C antibodies ameliorated angiotensin II-induced hypertension in healthy mice. Thus, in addition to its key role in mediating renal fibrosis, we identified PDGF-C as a mediator of hypertension via effects on renal vasculature and on the renin-angiotensin system. The contribution to both renal fibrosis and hypertension render PDGF-C an attractive target in progressive kidney disease.


Assuntos
Hipertensão/patologia , Rim/patologia , Linfocinas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Angiotensinogênio/metabolismo , Animais , Pressão Sanguínea/genética , Células Cultivadas , Colágeno Tipo IV/genética , Modelos Animais de Doenças , Fibrose , Hepatócitos , Humanos , Hipertensão/etiologia , Hipertensão/genética , Linfocinas/antagonistas & inibidores , Masculino , Camundongos , Camundongos Knockout , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Cultura Primária de Células , Regulação para Cima , Ureter/cirurgia
15.
Arterioscler Thromb Vasc Biol ; 38(1): 40-48, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191926

RESUMO

OBJECTIVE: The junctional adhesion molecule A (JAM-A) is physiologically located in interendothelial tight junctions and focally redistributes to the luminal surface of blood vessels under abnormal shear and flow conditions accompanying atherosclerotic lesion development. Therefore, JAM-A was evaluated as a target for molecularly targeted ultrasound imaging of transient endothelial dysfunction under acute blood flow variations. APPROACH AND RESULTS: Flow-dependent endothelial dysfunction was induced in apolipoprotein E-deficient mice (n=43) by carotid partial ligation. JAM-A expression was investigated by molecular ultrasound using antibody-targeted poly(n-butyl cyanoacrylate) microbubbles and validated with immunofluorescence. Flow disturbance and arterial remodeling were assessed using functional ultrasound. Partial ligation led to an immediate drop in perfusion at the ligated side and a direct compensatory increase at the contralateral side. This was accompanied by a strongly increased JAM-A expression and JAM-A-targeted microbubbles binding at the partially ligated side and by a moderate and temporary increase in the contralateral artery (≈14× [P<0.001] and ≈5× [P<0.001] higher than control, respectively), both peaking after 2 weeks. Subsequently, although JAM-A expression and JAM-A-targeted microbubbles binding persisted at a higher level at the partially ligated side, it completely normalized within 4 weeks at the contralateral side. CONCLUSIONS: Temporary blood flow variations induce endothelial rearrangement of JAM-A, which can be visualized using JAM-A-targeted microbubbles. Thus, JAM-A may be considered as a marker of acute endothelial activation and dysfunction. Its imaging may facilitate the early detection of cardiovascular risk areas, and it enables the therapeutic prevention of their progression toward an irreversible pathological state.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Estenose das Carótidas/diagnóstico por imagem , Moléculas de Adesão Celular/metabolismo , Endotélio Vascular/diagnóstico por imagem , Imagem Molecular/métodos , Receptores de Superfície Celular/metabolismo , Ultrassonografia , Animais , Biomarcadores/metabolismo , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Estenose das Carótidas/fisiopatologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Embucrilato/administração & dosagem , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Imunofluorescência , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos Knockout para ApoE , Microbolhas , Receptores de Superfície Celular/genética , Fluxo Sanguíneo Regional , Fatores de Tempo , Remodelação Vascular
16.
Am J Pathol ; 187(4): 752-766, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28183531

RESUMO

Arrhythmogenic cardiomyopathy (AC) is a hereditary disease leading to sudden cardiac death or heart failure. AC pathology is characterized by cardiomyocyte loss and replacement fibrosis. Our goal was to determine whether cardiomyocytes respond to AC progression by pathological hypertrophy. To this end, we examined tissue samples from AC patients with end-stage heart failure and tissue samples that were collected at different disease stages from desmoglein 2-mutant mice, a well characterized AC model. We find that cardiomyocyte diameters are significantly increased in right ventricles of AC patients. Increased mRNA expression of the cardiac stress marker natriuretic peptide B is also observed in the right ventricle of AC patients. Elevated myosin heavy chain 7 mRNA expression is detected in left ventricles. In desmoglein 2-mutant mice, cardiomyocyte diameters are normal during the concealed disease phase but increase significantly after acute disease onset on cardiomyocyte death and fibrotic myocardial remodeling. Hypertrophy progresses further during the chronic disease stage. In parallel, mRNA expression of myosin heavy chain 7 and natriuretic peptide B is up-regulated in both ventricles with right ventricular preference. Calcineurin/nuclear factor of activated T cells (Nfat) signaling, which is linked to pathological hypertrophy, is observed during AC progression, as evidenced by Nfatc2 and Nfatc3 mRNA in cardiomyocytes and increased mRNA of the Nfat target regulator of calcineurin 1. Taken together, we demonstrate that pathological hypertrophy occurs in AC and is secondary to cardiomyocyte loss and cardiac remodeling.


Assuntos
Arritmias Cardíacas/complicações , Cardiomegalia/complicações , Cardiomiopatias/complicações , Miócitos Cardíacos/patologia , Animais , Arritmias Cardíacas/sangue , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio/genética , Cardiomegalia/sangue , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Cardiomiopatias/sangue , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Tamanho Celular , Desmogleína 2/metabolismo , Dilatação , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Insuficiência Cardíaca/patologia , Testes de Função Cardíaca , Ventrículos do Coração/patologia , Humanos , Imunoglobulina G/sangue , Camundongos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Necrose , Tamanho do Órgão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
17.
Diabetes Obes Metab ; 20(12): 2911-2918, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30033664

RESUMO

Myocardial infarction causes rapid impairment of left ventricular function and requires a hypercontractile response of non-infarcted tissue areas to maintain haemodynamic stability. This compensatory adaptation is mediated by humoral, inflammatory and neuronal signals. GLP-1 is an incretin hormone with glucoregulatory and cardioprotective capacities and is secreted in response to nutritional and inflammatory stimuli. Inactivation of GLP-1 is caused by the ubiquitously present enzyme DPP-4. In this study, circulating concentrations of GLP-1 were assessed after myocardial infarction and were evaluated in the light of metabolism, left ventricular contractility and mitochondrial function. Circulating GLP-1 concentrations were markedly increased in patients with acute myocardial infarction. Experimental myocardial infarction by permanent LAD ligation proved sufficient to increase GLP-1 secretion in mice. This took place in a time-dependent manner, which coincided with the capacity of DPP-4 inhibition, by linagliptin, to augment left ventricular contractility in a GLP-1 receptor-dependent manner. Mechanistically, DPP-4 inhibition increased AMPK activity and stimulated the mitochondrial respiratory capacity of non-infarcted tissue areas. We describe a new functional relevance of inflammatory GLP-1 secretion for left ventricular contractility during myocardial infarction.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/sangue , Mitocôndrias/metabolismo , Contração Miocárdica/fisiologia , Infarto do Miocárdio/sangue , Função Ventricular Esquerda/fisiologia , Animais , Respiração Celular , Inibidores da Dipeptidil Peptidase IV/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Linagliptina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia
18.
Angew Chem Int Ed Engl ; 56(5): 1416-1421, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28005299

RESUMO

Novel polymeric cell adhesion inhibitors were developed in which the selectin tetrasaccharide sialyl-LewisX (SLeX ) is multivalently presented on a biocompatible poly(2-hydroxypropyl)methacrylamide (PHPMA) backbone either alone (P1) or in combination with O-sulfated tyramine side chains (P2). For comparison, corresponding polymeric glycomimetics were prepared in which the crucial "single carbohydrate" substructures fucose, galactose, and sialic acid side chains were randomly linked to the PHPMA backbone (P3 or P4 (O-sulfated tyramine)). All polymers have an identical degree of polymerization, as they are derived from the same precursor polymer. Binding assays to selectins, to activated endothelial cells, and to macrophages show that polyHPMA with SLeX is an excellent binder to E-, L-, and P-selectins. However, mimetic P4 can also achieve close to comparable binding affinities in in vitro measurements and surprisingly, it also significantly inhibits the migration of macrophages; this provides new perspectives for the therapy of severe inflammatory diseases.


Assuntos
Macrófagos/metabolismo , Oligossacarídeos/metabolismo , Selectinas/metabolismo , Movimento Celular , Células Cultivadas , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50 , Ligantes , Macrófagos/citologia , Microscopia de Fluorescência por Excitação Multifotônica , Nanomedicina , Oligossacarídeos/química , Ácidos Polimetacrílicos/química , Selectinas/química , Antígeno Sialil Lewis X , Ressonância de Plasmônio de Superfície , Tiramina/química
19.
Circulation ; 131(16): 1426-34, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25810338

RESUMO

BACKGROUND: The renin-angiotensin system and especially the angiotensin peptides play a central role in blood pressure regulation. Here, we hypothesize that an as-yet unknown peptide is involved in the action of angiotensin II modulating the vasoregulatory effects as a cofactor. METHODS AND RESULTS: The peptide with vasodilatory properties was isolated from adrenal glands chromatographically. The effects of this peptide were evaluated in vitro and in vivo, and the receptor affinity was analyzed. The plasma concentration in humans was quantified in patients with chronic kidney disease, patients with heart failure, and healthy control subjects. The amino acid sequence of the peptide from bovine adrenal glands was HSSYEDELSEVL EKPNDQAE PKEVTEEVSSKDAAE, which is a degradation product of chromogranin A. The sequence of the peptide isolated from human plasma was HSGFEDELSEVLENQSSQAELKEAVEEPSSKDVME. Both peptides diminished significantly the vasoconstrictive effect of angiotensin II in vitro. Therefore, we named the peptide vasoconstriction-inhibiting factor (VIF). The vasoregulatory effects of VIF are mediated by the angiotensin II type 2 receptor. VIF impairs angiotensin II-induced phosphorylation of the p38 mitogen-activated protein kinase pathway but not of extracellular-regulated kinase 1/2. The vasodilatory effects were confirmed in vivo. The plasma concentration was significantly increased in renal patients and patients with heart failure. CONCLUSIONS: VIF is a vasoregulatory peptide that modulates the vasoconstrictive effects of angiotensin II by acting on the angiotensin II type 2 receptor. It is likely that the increase in VIF may serve as a counterregulatory effect to defend against hypertension. The identification of this target may help us to understand the pathophysiology of renal and heart failure and may form a basis for the development of new strategies for the prevention and treatment of cardiovascular disease.


Assuntos
Glândulas Suprarrenais/química , Angiotensina II/fisiologia , Peptídeos/isolamento & purificação , Receptor Tipo 2 de Angiotensina/agonistas , Vasodilatação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Bovinos , Células Cultivadas , Cromogranina A/química , Células Endoteliais/efeitos dos fármacos , Insuficiência Cardíaca/sangue , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Dados de Sequência Molecular , Peptídeos/sangue , Peptídeos/química , Peptídeos/fisiologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Ratos Wistar , Insuficiência Renal Crônica/sangue , Sistema Renina-Angiotensina/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Basic Res Cardiol ; 111(1): 7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26667317

RESUMO

Recent advances in basic cardiovascular research as well as their translation into the clinical situation were the focus at the last "New Frontiers in Cardiovascular Research meeting". Major topics included the characterization of new targets and procedures in cardioprotection, deciphering new players and inflammatory mechanisms in ischemic heart disease as well as uncovering microRNAs and other biomarkers as versatile and possibly causal factors in cardiovascular pathogenesis. Although a number of pathological situations such as ischemia-reperfusion injury or atherosclerosis can be simulated and manipulated in diverse animal models, also to challenge new drugs for intervention, patient studies are the ultimate litmus test to obtain unequivocal information about the validity of biomedical concepts and their application in the clinics. Thus, the open and bidirectional exchange between bench and bedside is crucial to advance the field of ischemic heart disease with a particular emphasis of understanding long-lasting approaches in cardioprotection.


Assuntos
Doenças Cardiovasculares , Pesquisa Translacional Biomédica , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA