Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 200: 107079, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38272334

RESUMO

The AIM2 inflammasome represents a multifaceted oligomeric protein complex within the innate immune system, with the capacity to perceive double-stranded DNA (dsDNA) and engage in diverse physiological reactions and disease contexts, including cancer. While originally conceived as a discerning DNA sensor, AIM2 has demonstrated its capability to discern various nucleic acid variations, encompassing RNA and DNA-RNA hybrids. Through its interaction with nucleic acids, AIM2 orchestrates the assembly of a complex involving multiple proteins, aptly named the AIM2 inflammasome, which facilitates the enzymatic cleavage of proinflammatory cytokines, namely pro-IL-1ß and pro-IL-18. This process, in turn, underpins its pivotal biological role. In this review, we provide a systematic summary and discussion of the latest advancements in AIM2 sensing various types of nucleic acids. Additionally, we discuss the modulation of AIM2 activation, which can cause cell death, including pyroptosis, apoptosis, and autophagic cell death. Finally, we fully illustrate the evidence for the dual role of AIM2 in different cancer types, including both anti-tumorigenic and pro-tumorigenic functions. Considering the above information, we uncover the therapeutic promise of modulating the AIM2 inflammasome in cancer treatment.


Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Inflamassomos/metabolismo , Ácidos Nucleicos/uso terapêutico , Neoplasias/tratamento farmacológico , DNA , RNA , Proteínas de Ligação a DNA/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834844

RESUMO

Annexin A1 (ANXA1) is an endogenous protein, which plays a central function in the modulation of inflammation. While the functions of ANXA1 and its exogenous peptidomimetics, N-Acetyl 2-26 ANXA1-derived peptide (ANXA1Ac2-26), in the modulation of immunological responses of neutrophils and monocytes have been investigated in detail, their effects on the modulation of platelet reactivity, haemostasis, thrombosis, and platelet-mediated inflammation remain largely unknown. Here, we demonstrate that the deletion of Anxa1 in mice upregulates the expression of its receptor, formyl peptide receptor 2/3 (Fpr2/3, orthologue of human FPR2/ALX). As a result, the addition of ANXA1Ac2-26 to platelets exerts an activatory role in platelets, as characterised by its ability to increase the levels of fibrinogen binding and the exposure of P-selectin on the surface. Moreover, ANXA1Ac2-26 increased the development of platelet-leukocyte aggregates in whole blood. The experiments carried out using a pharmacological inhibitor (WRW4) for FPR2/ALX, and platelets isolated from Fpr2/3-deficient mice ascertained that the actions of ANXA1Ac2-26 are largely mediated through Fpr2/3 in platelets. Together, this study demonstrates that in addition to its ability to modulate inflammatory responses via leukocytes, ANXA1 modulates platelet function, which may influence thrombosis, haemostasis, and platelet-mediated inflammation under various pathophysiological settings.


Assuntos
Anexina A1 , Animais , Humanos , Camundongos , Anexina A1/metabolismo , Plaquetas/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Peptídeos/farmacologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo
3.
Breast Cancer Res ; 24(1): 25, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382852

RESUMO

BACKGROUND: Despite advancements in therapies, brain metastasis in patients with triple negative subtype of breast cancer remains a therapeutic challenge. Activated microglia are often observed in close proximity to, or within, malignant tumor masses, suggesting a critical role that microglia play in brain tumor progression. Annexin-A1 (ANXA1), a glucocorticoid-regulated protein with immune-regulatory properties, has been implicated in the growth and metastasis of many cancers. Its role in breast cancer-microglia signaling crosstalk is not known. METHODS: The importance of microglia proliferation and activation in breast cancer to brain metastasis was evaluated in MMTV-Wnt1 spontaneous mammary tumor mice and BALBc mice injected with 4T1 murine breast cancer cells into the carotid artery using flow cytometry. 4T1 induced-proliferation and migration of primary microglia and BV2 microglia cells were evaluated using 2D and coculture transwell assays. The requirement of ANXA1 in these functions was examined using a Crispr/Cas9 deletion mutant of ANXA1 in 4T1 breast cancer cells as well as BV2 microglia. Small molecule inhibition of the ANXA1 receptor FPR1 and FPR2 were also examined. The signaling pathways involved in these interactions were assessed using western blotting. The association between lymph node positive recurrence-free patient survival and distant metastasis-free patient survival and ANXA1 and FPR1 and FPR2 expression was examined using TCGA datasets. RESULTS: Microglia activation is observed prior to brain metastasis in MMTV-Wnt1 mice with primary and secondary metastasis in the periphery. Metastatic 4T1 mammary cancer cells secrete ANXA1 to promote microglial migration, which in turn, enhances tumor cell migration. Silencing of ANXA1 in 4T1 cells by Crispr/Cas9 deletion, or using inhibitors of FPR1 or FPR2 inhibits microglia migration and leads to reduced activation of STAT3. Finally, elevated ANXA1, FPR1 and FPR2 is significantly associated with poor outcome in lymph node positive patients, particularly, for distant metastasis free patient survival. CONCLUSIONS: The present study uncovered a network encompassing autocrine/paracrine ANXA1 signaling between metastatic mammary cancer cells and microglia that drives microglial recruitment and activation. Inhibition of ANXA1 and/or its receptor may be therapeutically rewarding in the treatment of breast cancer and secondary metastasis to the brain.


Assuntos
Anexina A1 , Neoplasias da Mama , Microglia , Receptores de Formil Peptídeo , Animais , Anexina A1/genética , Encéfalo/patologia , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Microglia/metabolismo , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas
4.
Mol Psychiatry ; 26(8): 4544-4560, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33299135

RESUMO

Chronic cerebral hypoperfusion is associated with vascular dementia (VaD). Cerebral hypoperfusion may initiate complex molecular and cellular inflammatory pathways that contribute to long-term cognitive impairment and memory loss. Here we used a bilateral common carotid artery stenosis (BCAS) mouse model of VaD to investigate its effect on the innate immune response-particularly the inflammasome signaling pathway. Comprehensive analyses revealed that chronic cerebral hypoperfusion induces a complex temporal expression and activation of inflammasome components and their downstream products (IL-1ß and IL-18) in different brain regions, and promotes activation of apoptotic and pyroptotic cell death pathways. Polarized glial-cell activation, white-matter lesion formation and hippocampal neuronal loss also occurred in a spatiotemporal manner. Moreover, in AIM2 knockout mice we observed attenuated inflammasome-mediated production of proinflammatory cytokines, apoptosis, and pyroptosis, as well as resistance to chronic microglial activation, myelin breakdown, hippocampal neuronal loss, and behavioral and cognitive deficits following BCAS. Hence, we have demonstrated that activation of the AIM2 inflammasome substantially contributes to the pathophysiology of chronic cerebral hypoperfusion-induced brain injury and may therefore represent a promising therapeutic target for attenuating cognitive impairment in VaD.


Assuntos
Disfunção Cognitiva , Demência Vascular , Substância Branca , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Substância Branca/metabolismo
5.
Apoptosis ; 25(1-2): 1-11, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31667646

RESUMO

Influenza A viruses (IAVs) are respiratory pathogens that cause severe morbidity and mortality worldwide. They affect cellular processes such as proliferation, protein synthesis, autophagy, and apoptosis. Although apoptosis is considered an innate cellular response to invading infectious pathogens, IAVs have evolved to encode viral proteins that modulate host cellular apoptosis in ways that support efficient viral replication and propagation. An understanding of the modulation of host responses is essential to the development of novel therapeutics for the treatment of IAV infections. In this review, we discuss the IAV lifecycle, biology, and strategies employed by the virus to modulate apoptosis to enhance viral survival and establish an infection.


Assuntos
Apoptose , Vírus da Influenza A/fisiologia , Influenza Humana/fisiopatologia , Animais , Humanos , Vírus da Influenza A/genética , Influenza Humana/virologia , Replicação Viral
6.
FASEB J ; 32(3): 1468-1478, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29127186

RESUMO

The regulation of host factors is a key strategy employed by viruses to suppress host defense systems and enhance their propagation; however, the mechanisms that underlie this regulation is still unclear. Formyl peptide receptor 2 (FPR2) recognizes numerous proinflammatory and anti-inflammatory stimuli, and emerging reports indicate elevated levels of FPR2 in several disease conditions. Although studies have implicated FPR2 in a myriad of inflammatory conditions, how viruses exploit this cell-surface receptor to facilitate disease progression remains unknown. In this study, we show that the activation of TLR3 and TLR7 induces the up-regulation of FPR2. We provide evidence that signal transducer and activator of transcription 3 (STAT3) phosphorylation is critical for the induction of FPR2 by double-stranded RNA, but not single-stranded RNA viral mimetics. Use of bone marrow-derived macrophages (BMDMs) from IFN-αß receptor-deficient mice revealed that signaling via the type I IFN-STAT3 pathway is essential for FPR2 induction. We demonstrate that virus infection with enterovirus 71 and H1N1 PR8 influenza virus results in increased FPR2 expression. Inhibition of STAT3 phosphorylation in virus-infected cells repressed the induction of FPR2, which led to a reduction in viral loads. Finally, the absence of FPR2 in murine BMDMs resulted in lower viral loads, which suggests that FPR2 may be important for virus replication. Altogether, our study provides novel insights into how RNA viruses may hijack the immune system to facilitate their replication and survival. Identification of these regulatory elements may be useful in designing therapeutics for inflammatory disease conditions that are associated with elevated levels of FPR2.-Ampomah, P. B., Moraes, L. A., Lukman, H. M., Lim, L. H. K. Formyl peptide receptor 2 is regulated by RNA mimics and viruses through an IFN-ß-STAT3-dependent pathway.


Assuntos
Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , RNA Viral/imunologia , Receptores de Formil Peptídeo/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Animais , Infecções por Enterovirus/genética , Vírus da Influenza A Subtipo H1N1/genética , Interferon beta/genética , Interferon beta/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , RNA Viral/genética , Receptores de Formil Peptídeo/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia
7.
Int J Mol Sci ; 19(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274259

RESUMO

The tumor necrosis factor-α-induced protein 8-like (TIPE/TNFAIP8) family is a recently identified family of proteins that is strongly associated with the regulation of immunity and tumorigenesis. This family is comprised of four members, namely, tumor necrosis factor-α-induced protein 8 (TIPE/TNFAIP8), tumor necrosis factor-α-induced protein 8-like 1 (TIPE1/TNFAIP8L1), tumor necrosis factor-α-induced protein 8-like 2 (TIPE2/TNFAIP8L2), and tumor necrosis factor-α-induced protein 8-like 3 (TIPE3/TNFAIP8L3). Although the proteins of this family were initially described as regulators of tumorigenesis, inflammation, and cell death, they are also found to be involved in the regulation of autophagy and the transfer of lipid secondary messengers, besides contributing to immune function and homeostasis. Interestingly, despite the existence of a significant sequence homology among the four members of this family, they are involved in different biological activities and also exhibit remarkable variability of expression. Furthermore, this family of proteins is highly deregulated in different human cancers and various chronic diseases. This review summarizes the vivid role of the TIPE family of proteins and its association with various signaling cascades in diverse chronic diseases.


Assuntos
Doença Crônica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/metabolismo
8.
Breast Cancer Res ; 19(1): 132, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233185

RESUMO

BACKGROUND: Annexin-1 (ANXA1) plays pivotal roles in regulating various physiological processes including inflammation, proliferation and apoptosis, and deregulation of ANXA1 functions has been associated with tumorigenesis and metastasis events in several types of cancer. Though ANXA1 levels correlate with breast cancer disease status and outcome, its distinct functional involvement in breast cancer initiation and progression remains unclear. We hypothesized that ANXA1-responsive kinase signaling alteration and associated phosphorylation signaling underlie early events in breast cancer initiation events and hence profiled ANXA1-dependent phosphorylation changes in mammary gland epithelial cells. METHODS: Quantitative phosphoproteomics analysis of mammary gland epithelial cells derived from ANXA1-heterozygous and ANXA1-deficient mice was carried out using stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry. Kinase and signaling changes underlying ANXA1 perturbations were derived by upstream kinase prediction and integrated network analysis of altered proteins and phosphoproteins. RESULTS: We identified a total of 8110 unique phosphorylation sites, of which 582 phosphorylation sites on 372 proteins had ANXA1-responsive changes. A majority of these phosphorylation changes occurred on proteins associated with cytoskeletal reorganization spanning the focal adhesion, stress fibers, and also the microtubule network proposing new roles for ANXA1 in regulating microtubule dynamics. Comparative analysis of regulated global proteome and phosphoproteome highlighted key differences in translational and post-translational effects of ANXA1, and suggested closely coordinated rewiring of the cell adhesion network. Kinase prediction analysis suggested activity modulation of calmodulin-dependent protein kinase II (CAMK2), P21-activated kinase (PAK), extracellular signal-regulated kinase (ERK), and IκB kinase (IKK) upon loss of ANXA1. Integrative analysis revealed regulation of the WNT and Hippo signaling pathways in ANXA1-deficient mammary epithelial cells, wherein there is downregulation of transcriptional effects of TEA domain family (TEAD) suggestive of ANXA1-responsive transcriptional rewiring. CONCLUSIONS: The phosphoproteome landscape uncovered several novel perspectives for ANXA1 in mammary gland biology and highlighted its involvement in key signaling pathways modulating cell adhesion and migration that could contribute to breast cancer initiation.


Assuntos
Anexina A1/deficiência , Anexina A1/genética , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Proteômica , Animais , Adesão Celular , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Técnicas de Inativação de Genes , Humanos , Camundongos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos
9.
Int Immunol ; 28(5): 223-32, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26567289

RESUMO

The toll-like receptors (TLRs) are important innate receptors recognizing potentially pathogenic material. However, they also play a significant role in the development of Alzheimer's disease, cancer, autoimmunity and the susceptibility to viral infections. Macrophages are essential for an effective immune response to foreign material and the resolution of inflammation. In these studies, we examined the impact of different TLR ligands on macrophage cell function. We demonstrate that stimulation of all TLRs tested increases the phagocytosis of apoptotic cells by macrophages. TLR7 and TLR9 ligation decreased the levels of the surface co-expression molecules CD86 and MHCII, which was associated with a concomitant reduction in antigen presentation and proliferation of T cells. This down-regulation in macrophage function was not due to an increase in cell death. In fact, exposure to TLR7 or TLR9 ligands promoted cell viability for up to 9 days, in contrast to TLR3 or TLR4. Additionally, macrophages exposed to TLR7/TLR9 ligands had a significantly lower ratio of Il-12/Il-10 mRNA expression compared with those treated with the TLR4 ligand, LPS. Taken together, these data demonstrate that TLR7/TLR9 ligands push the macrophage into a phagocytic long-lived cell, with a decreased capacity of antigen presentation and reminiscent of the M2 polarized state.


Assuntos
Apresentação de Antígeno , Macrófagos/imunologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/imunologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Ligantes , Lipopolissacarídeos/toxicidade , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/genética
10.
Proteomics ; 15(2-3): 408-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25124533

RESUMO

Annexin-1 (ANXA1) is known to be involved in important cellular processes and implicated in cancer. Our previous study showed its roles in cell migration and DNA-damage response processes in breast cancer initiation. In order to understand its roles in tumorigenesis, we extended our studies to analyze tumors derived from polyomavirus middle T-antigen ANXA1 heterozygous (ANXA1(+/-) ) and ANXA1 null (ANXA1(-/-) ) mice. We performed quantitative comparison of ANXA1(+/-) and ANXA1(-/-) tumors employing reductive dimethyl labeling quantitative proteomics. We observed 253 differentially expressed proteins (DEPs) with high statistical significance among over 5000 quantified proteins. Combinatorial use of pathway and network-based computational analyses of the DEPs revealed that ANXA1 primarily modulates processes related to cytoskeletal remodeling and immune responses in these mammary tumors. Of particular note, ANXA1(-/-) tumor showed reduced expression of a known epithelial-to-mesenchymal transition (EMT) marker vimentin, as well as myosin light-chain kinase, which has been reported to induce Rho-kinase mediated assembly of stress fibers known to be implicated in EMT. Integrative network analysis of established interactome of ANXA1 alongside with DEPs further highlights the involvement of ANXA1 in EMT. Functional role of ANXA1 in tumorigenesis was established in invasion assay where knocking down ANXA1 in murine mammary tumor cell line 168FARN showed lower invasive capability. Altogether, this study emphasizes that ANXA1 plays modulating roles contributing to invasion-metastasis in mammary tumorigenesis, distinctive to its roles in cancer initiation.


Assuntos
Anexina A1/metabolismo , Carcinogênese/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Mapas de Interação de Proteínas , Animais , Anexina A1/genética , Carcinogênese/genética , Carcinogênese/patologia , Transição Epitelial-Mesenquimal , Feminino , Técnicas de Silenciamento de Genes , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/genética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteômica
12.
Biochem Biophys Res Commun ; 461(1): 47-53, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25866182

RESUMO

Wound healing is critical for normal development and pathological processes including cancer cell metastasis. MAPK, Rho-GTPases and NFκB are important regulators of wound healing, but mechanisms for their integration are incompletely understood. Annexin-A1 (ANXA1) is upregulated in invasive breast cancer cells resulting in constitutive activation of NFκB. We show here that silencing ANXA1 increases the formation of stress fibers and focal adhesions, which may inhibit wound healing. ANXA1 regulated wound healing is dependent on the activation of ERK1/2. ANXA1 increases the activation of RhoA, which is dependent on ERK activation. Furthermore, active RhoA is important in NF-κB activation, where constitutively active RhoA potentiates NFκB activation, while dominant negative RhoA inhibits NFκB activation in response to CXCL12 stimulation and active MEKK plasmids. These findings establish a central role for ANXA1 in the cell migration through the activation of NFκB, ERK1/2 and RhoA.


Assuntos
Anexina A1/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Cicatrização/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Movimento Celular , Feminino , Humanos , Células MCF-7 , Células Tumorais Cultivadas
13.
J Immunol ; 191(8): 4375-82, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24048896

RESUMO

TLRs play a pivotal role in the recognition of bacteria and viruses. Members of the family recognize specific pathogen sequences to trigger both MyD88 and TRIF-dependent pathways to stimulate a plethora of cells. Aberrant activation of these pathways is known to play a critical role in the development of autoimmunity and cancer. However, how these pathways are entirely regulated is not fully understood. In these studies, we have identified Annexin-A1 (ANXA1) as a novel regulator of TLR-induced IFN-ß and CXCL10 production. We demonstrate that in the absence of ANXA1, mice produce significantly less IFN-ß and CXCL10, and macrophages and plasmacytoid dendritic cells have a deficiency in activation following polyinosinic:polycytidylic acid administration in vivo. Furthermore, a deficiency in activation is observed in macrophages after LPS and polyinosinic:polycytidylic acid in vitro. In keeping with these findings, overexpression of ANXA1 resulted in enhanced IFN-ß and IFN-stimulated responsive element promoter activity, whereas silencing of ANXA1 impaired TLR3- and TLR4-induced IFN-ß and IFN-stimulated responsive element activation. In addition, we show that the C terminus of ANXA1 directly associates with TANK-binding kinase 1 to regulate IFN regulatory factor 3 translocation and phosphorylation. Our findings demonstrate that ANXA1 plays an important role in TLR activation, leading to an augmentation in the type 1 IFN antiviral cytokine response.


Assuntos
Anexina A1/metabolismo , Interferon beta/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Anexina A1/biossíntese , Anexina A1/genética , Linhagem Celular , Quimiocina CXCL10/biossíntese , Células Dendríticas/metabolismo , Ativação Enzimática , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fosforilação , Poli I-C/farmacologia , Transdução de Sinais/imunologia
14.
Mol Cell Proteomics ; 11(8): 381-93, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22511458

RESUMO

Annexin 1 (ANXA1), the first characterized member of the annexin superfamily, is known to bind or annex to cellular membranes in a calcium-dependent manner. Besides mediating inflammation, ANXA1 has also been reported to be involved in important physiopathological implications including cell proliferation, differentiation, apoptosis, cancer, and metastasis. However, with controversies in ANXA1 expression in breast carcinomas, its role in breast cancer initiation and progression remains unclear. To elucidate how ANXA1 plays a role in breast cancer initiation, we performed stable isotope labeling of amino acids in cell culture analysis on normal mammary gland epithelial cells from ANXA1-heterozygous (ANXA1(+/-)) and ANXA1-null (ANXA1(-/-)) mice. Among over 4000 quantified proteins, we observed 214 up-regulated and 169 down-regulated with ANXA1(-/-). Bioinformatics analysis of the down-regulated proteins revealed that ANXA1 is potentially implicated in DNA damage response, whereas the analysis of up-regulated proteins showed the possible roles of ANXA1 in cell adhesion and migration pathways. These observations were supported by relevant functional assays. The assays for DNA damage response demonstrated an accumulation of more DNA damage with slower recovery on heat stress and an impaired oxidative damage response in ANXA1(-/-) cells in comparison with ANXA1(+/-) cells. Overexpressing Yes-associated protein 1 or Yap1, the most down-regulated protein in DNA damage response pathway cluster, rescued the proliferative response in ANXA1(-/-) cells exposed to oxidative damage. Both migration and wound healing assays showed that ANXA1(+/-) cells possess higher motility with better wound closure capability than ANXA1(-/-) cells. Knocking down of ß-parvin, the protein with the highest fold change in the cell adhesion protein cluster, indicated an increased cell migration in ANXA1(-/-) cells. Altogether our quantitative proteomics study on ANXA1 suggests that ANXA1 plays a protective role in DNA damage and modulates cell adhesion and motility, indicating its potential role in cancer initiation as well as progression in breast carcinoma.


Assuntos
Anexina A1/fisiologia , Movimento Celular/fisiologia , Dano ao DNA , Glândulas Mamárias Animais/metabolismo , Proteômica/métodos , Animais , Anexina A1/análise , Anexina A1/genética , Western Blotting , Adesão Celular/genética , Adesão Celular/fisiologia , Movimento Celular/genética , Células Cultivadas , Ensaio Cometa , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Marcação por Isótopo/métodos , Glândulas Mamárias Animais/citologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxidantes/farmacologia , Peptídeos/análise , Peptídeos/genética , Proteoma/análise , Proteoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Microbiol Spectr ; 12(1): e0260923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38038453

RESUMO

IMPORTANCE: Influenza A virus is a respiratory virus that can cause complications such as acute bronchitis and secondary bacterial pneumonia. Drug therapies and vaccines are available against influenza, albeit limited by drug resistance and the non-universal vaccine administration. Hence there is a need for host-targeted therapies against influenza to provide an effective alternative therapeutic target. Sec13 was identified as a novel host interactor of influenza. Endoplasmic reticulum-to-Golgi transport is an important pathway of influenza virus replication and viral export. Specifically, Sec13 has a functional role in influenza replication and virulence.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Humanos , Replicação Viral , Complexo de Golgi/metabolismo
16.
Antioxidants (Basel) ; 12(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36829879

RESUMO

Background: Anthracyclines such as doxorubicin remain a primary treatment for hematological malignancies and breast cancers. However, cardiotoxicity induced by anthracyclines, possibly leading to heart failure, severely limits their application. The pathological mechanisms of anthracycline-induced cardiac injury are believed to involve iron-overload-mediated formation of reactive oxygen species (ROS), mitochondrial dysfunction, and inflammation. The dietary thione, ergothioneine (ET), is avidly absorbed and accumulated in tissues, including the heart. Amongst other cytoprotective properties, ET was shown to scavenge ROS, decrease proinflammatory mediators, and chelate metal cations, including Fe2+, preventing them from partaking in redox activities, and may protect against mitochondrial damage and dysfunction. Plasma ET levels are also strongly correlated to a decreased risk of cardiovascular events in humans, suggesting a cardioprotective role. This evidence highlights ET's potential to counteract anthracycline cardiotoxicity. Methods and Findings: We investigated whether ET supplementation can protect against cardiac dysfunction in mice models of doxorubicin-induced cardiotoxicity and revealed that it had significant protective effects. Moreover, ET administration in a mouse breast cancer model did not exacerbate the growth of the tumor or interfere with the chemotherapeutic efficacy of doxorubicin. Conclusion: These results suggest that ET could be a viable co-therapy to alleviate the cardiotoxic effects of anthracyclines in the treatment of cancers.

17.
Front Immunol ; 14: 1211730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449203

RESUMO

Intracellular recognition of self and non-self -nucleic acids can result in the initiation of effective pro-inflammatory and anti-tumorigenic responses. We hypothesized that macrophages can be activated by tumor-derived nucleic acids to induce inflammasome activation in the tumor microenvironment. We show that tumor conditioned media (CM) can induce IL-1ß production, indicative of inflammasome activation in primed macrophages. This could be partially dependent on caspase 1/11, AIM2 and NLRP3. IL-1ß enhances tumor cell proliferation, migration and invasion while coculture of tumor cells with macrophages enhances the proliferation of tumor cells, which is AIM2 and caspase 1/11 dependent. Furthermore, we have identified that DNA-RNA hybrids could be the nucleic acid form which activates AIM2 inflammasome at a higher sensitivity as compared to dsDNA. Taken together, the tumor-secretome stimulates an innate immune pathway in macrophages which promotes paracrine cancer growth and may be a key tumorigenic pathway in cancer. Broader understanding on the mechanisms of nucleic acid recognition and interaction with innate immune signaling pathway will help us to better appreciate its potential application in diagnostic and therapeutic benefit in cancer.


Assuntos
Inflamassomos , Neoplasias , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo , Microambiente Tumoral , Proteínas de Ligação a DNA/metabolismo , Macrófagos , DNA/metabolismo , Neoplasias/metabolismo , Carcinogênese/metabolismo
18.
Theranostics ; 12(8): 3794-3817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664067

RESUMO

Background: High emotional or psychophysical stress levels have been correlated with an increased risk and progression of various diseases. How stress impacts the gut microbiota to influence metabolism and subsequent cancer progression is unclear. Methods: Feces and serum samples from BALB/c ANXA1+/+ and ANXA1-/- mice with or without chronic restraint stress were used for 16S rRNA gene sequencing and GC-MS metabolomics analysis to investigate the effect of stress on microbiome and metabolomics during stress and breast tumorigenesis. Breast tumors samples from stressed and non-stressed mice were used to perform Whole-Genome Bisulfite Sequencing (WGBS) and RNAseq analysis to construct the potential network from candidate hub genes. Finally, machine learning and integrated analysis were used to map the axis from chronic restraint stress to breast cancer development. Results: We report that chronic stress promotes breast tumor growth via a stress-microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Chronic restraint stress in mice alters the microbiome composition and fatty acids metabolism and induces an epigenetic signature in tumors xenografted after stress. Subsequent machine learning and systemic modeling analyses identified a significant correlation among microbiome composition, metabolites, and differentially methylated regions in stressed tumors. Moreover, silencing Annexin-A1 inhibits the changes in the gut microbiome and fatty acid metabolism after stress as well as basal and stress-induced tumor growth. Conclusions: These data support a physiological axis linking the microbiome and metabolites to cancer epigenetics and inflammation. The identification of this axis could propel the next phase of experimental discovery in further understanding the underlying molecular mechanism of tumorigenesis caused by physiological stress.


Assuntos
Anexina A1 , Microbiota , Neoplasias , Animais , Carcinogênese/genética , Epigênese Genética , Ácidos Graxos/farmacologia , Metaboloma , Metabolômica , Camundongos , Neoplasias/genética , RNA Ribossômico 16S/genética
19.
Oncogene ; 41(13): 1986-2002, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236967

RESUMO

Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Neoplasias , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Fatores de Transcrição , Trifosfato de Adenosina/metabolismo , Apoptose , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Consumo de Oxigênio , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Quinase 1 Polo-Like
20.
Geroscience ; 44(4): 2171-2194, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35357643

RESUMO

Intermittent fasting (IF) remains the most effective intervention to achieve robust anti-aging effects and attenuation of age-related diseases in various species. Epigenetic modifications mediate the biological effects of several environmental factors on gene expression; however, no information is available on the effects of IF on the epigenome. Here, we first found that IF for 3 months caused modulation of H3K9 trimethylation (H3K9me3) in the cerebellum, which in turn orchestrated a plethora of transcriptomic changes involved in robust metabolic switching processes commonly observed during IF. Second, a portion of both the epigenomic and transcriptomic modulations induced by IF was remarkably preserved for at least 3 months post-IF refeeding, indicating that memory of IF-induced epigenetic changes was maintained. Notably, though, we found that termination of IF resulted in a loss of H3K9me3 regulation of the transcriptome. Collectively, our study characterizes the novel effects of IF on the epigenetic-transcriptomic axis, which controls myriad metabolic processes. The comprehensive analyses undertaken in this study reveal a molecular framework for understanding how IF impacts the metabolo-epigenetic axis of the brain and will serve as a valuable resource for future research.


Assuntos
Epigenômica , Transcriptoma , Jejum , Perfilação da Expressão Gênica , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA