Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2402911121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776366

RESUMO

Leaf yellowing is a well-known phenotype that attracts phloem-feeding insects. However, it remains unclear how insect-vectored plant pathogens induce host leaf yellowing to facilitate their own transmission by insect vectors. Here, we report that an effector protein secreted by rice orange leaf phytoplasma (ROLP) inhibits chlorophyll biosynthesis and induces leaf yellowing to attract leafhopper vectors, thereby presumably promoting pathogen transmission. This effector, designated secreted ROLP protein 1 (SRP1), first secreted into rice phloem by ROLP, was subsequently translocated to chloroplasts by interacting with the chloroplastic glutamine synthetase (GS2). The direct interaction between SRP1 and GS2 disrupts the decamer formation of the GS2 holoenzyme, attenuating its enzymatic activity, thereby suppressing the synthesis of chlorophyll precursors glutamate and glutamine. Transgenic expression of SRP1 in rice plants decreased GS2 activity and chlorophyll precursor accumulation, finally inducing leaf yellowing. This process is correlated with the previous evidence that the knockout of GS2 expression in rice plants causes a similar yellow chlorosis phenotype. Consistently, these yellowing leaves attracted higher numbers of leafhopper vectors, caused the vectors to probe more frequently, and presumably facilitate more efficient phytoplasma transmission. Together, these results uncover the mechanism used by phytoplasmas to manipulate the leaf color of infected plants for the purpose of enhancing attractiveness to insect vectors.


Assuntos
Cloroplastos , Glutamato-Amônia Ligase , Hemípteros , Insetos Vetores , Oryza , Phytoplasma , Folhas de Planta , Animais , Hemípteros/microbiologia , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/genética , Phytoplasma/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Oryza/microbiologia , Oryza/genética , Insetos Vetores/microbiologia , Cloroplastos/metabolismo , Doenças das Plantas/microbiologia , Clorofila/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
2.
Pharmacol Res ; 203: 107164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569981

RESUMO

The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.


Assuntos
Doenças Cardiovasculares , Proteínas Mitocondriais , Proteínas Musculares , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos
3.
J Biochem Mol Toxicol ; 38(1): e23623, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229322

RESUMO

Ischemia/reperfusion (I/R)-induced neural damage and neuroinflammation have been associated with pathological progression during stroke. Netrin-1 is an important member of the family of laminin-related secreted proteins, which plays an important role in governing axon elongation. However, it is unknown whether Netrin-1 possesses a beneficial role in stroke. Here, we employed the middle cerebral artery occlusion (MCAO) model to study the function of Netrin-1 in alleviating brain injuries. Our results demonstrate that Netrin-1 rescued poststroke neurological deficits and inhibited production of the inflammatory cytokines such as interleukin 6 (IL-6) and endothelial chemokine (C-X-C motif) ligand 1 (Cxcl1). Importantly, Netrin-1 protected against MCAO-induced dysfunction of the blood-brain barrier (BBB) in mice and a reduction in the expression of the tight junction (TJ) protein occludin. Additionally, we report that Netrin-1 could ameliorate oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury and prevent aggravation in endothelial monolayer permeability in bEnd.3 human brain microvascular endothelial cells (HBMVECs). Mechanistically, Netrin-1 ameliorated OGD/R-induced decrease in occludin and Kruppel-like factor 2 (KLF2) in HBMVECs. Notably, silencing of KLF2 abolished the beneficial effects of Netrin-1 in protecting endothelial permeability and occludin expression, suggesting that these effects are mediated by KLF2. In conclusion, our findings suggest that Netrin-1 could constitute a novel therapeutic strategy for ischemic stroke.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Netrina-1 , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Netrina-1/metabolismo , Ocludina/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição/metabolismo
4.
Genomics ; 115(3): 110631, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37120099

RESUMO

Many processes, such as growth, aging, and adaptation to abiotic stress, are regulated in plants by NAC transcription factors. In woody plants, NAC transcription factors acts as a primary switch that regulates secondary xylem development by activating various downstream transcription factors and modulating expression levels of genes involved in the synthesis of the secondary cell wall. Our team had previously sequenced the whole genome of the camphor tree (Cinnamomum camphora). Here, we performed a detailed analysis of the NAC gene family of C. camphora and examined its evolutionary history. The genomic sequences of 121 NAC genes of C. camphora were identified and classified into 20 subfamilies in 2 major classes based on the phylogenetic analysis and structural features. Expansion of the CcNAC gene family occurred mainly by fragment replication and was influenced by the purifying selection. By analyzing predicted interactions of the homologous AtNAC proteins, we identified five CcNACs that potentially regulate xylem development in C. camphora. RNA sequencing revealed distinct expression profiles of CcNACs in seven different plant tissues. Subcellular localization prediction revealed that 120, 3, and 2 CcNACs have biological functions in the nucleus, cytoplasm, and chloroplast, respectively. Furthermore, we verified expression patterns of five CcNACs (CcNAC012, CcNAC028, CcNAC055, CcNAC080, and CcNAC119) in various tissue types using qRT-PCR. Our results will facilitate further in-depth studies of the molecular mechanisms by which CcNAC transcription factors regulate wood formation and other processes in C. camphora.


Assuntos
Cinnamomum camphora , Madeira , Madeira/metabolismo , Genes de Plantas , Cinnamomum camphora/química , Cinnamomum camphora/genética , Cinnamomum camphora/metabolismo , Filogenia , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética
5.
J Mol Cell Cardiol ; 174: 15-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36375319

RESUMO

Iron is necessary for the life of practically all living things, yet it may also harm people toxically. Accordingly, humans and other mammals have evolved an effective and tightly regulatory system to maintain iron homeostasis in healthy tissues, including the heart. Iron deficiency is common in patients with heart failure, and is associated with worse prognosis in this population; while the prevalence of iron overload-related cardiovascular disorders is also increasing. Therefore, enhancing the therapy of patients with cardiovascular disorders requires a thorough understanding of iron homeostasis. Here, we give readers an overview of the fundamental mechanisms governing systemic iron homeostasis as well as the most recent knowledge about the intake, storage, use, and export of iron from the heart. Genetic mouse models used for investigation of iron metabolism in various in vivo scenarios are summarized and highlighted. We also go through different clinical conditions and therapeutic approaches that target cardiac iron dyshomeostasis. Finally, we conclude the review by outlining the present knowledge gaps and important open questions in this field in order to guide future research on cardiac iron metabolism.


Assuntos
Insuficiência Cardíaca , Deficiências de Ferro , Humanos , Animais , Camundongos , Ferro/metabolismo , Coração , Insuficiência Cardíaca/metabolismo , Homeostase , Mamíferos/metabolismo
6.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614238

RESUMO

Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been identified as a crucial immune suppressor in human cancers, comparable to programmed cell death 1 ligand (PD-L1). However, the regulatory mechanisms underlying its transcriptional upregulation in human cancers remain largely unknown. Here, we show that the transcription factors ETS-1 and ETS-2 bound to the Siglec-15 promoter to enhance transcription and expression of Siglec-15 in hepatocellular carcinoma (HCC) cells and that transforming growth factor ß-1 (TGF-ß1) upregulated the expression of ETS-1 and ETS-2 and facilitated the binding of ETS-1 and ETS-2 to the Siglec-15 promoter. We further demonstrate that TGF-ß1 activated the Ras/C-Raf/MEK/ERK1/2 signaling pathway, leading to phosphorylation of ETS-1 and ETS-2, which consequently upregulates the transcription and expression of Siglec-15. Our study defines a detailed molecular profile of how Siglec-15 is transcriptionally regulated which may offer significant opportunity for therapeutic intervention on HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linhagem Celular , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
7.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834907

RESUMO

Cinnamomum camphora is one of the most commonly used tree species in landscaping. Improving its ornamental traits, particularly bark and leaf colors, is one of the key breeding goals. The basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial in controlling anthocyanin biosynthesis in many plants. However, their role in C. camphora remains largely unknown. In this study, we identified 150 bHLH TFs (CcbHLHs) using natural mutant C. camphora 'Gantong 1', which has unusual bark and leaf colors. Phylogenetic analysis revealed that 150 CcbHLHs were divided into 26 subfamilies which shared similar gene structures and conserved motifs. According to the protein homology analysis, we identified four candidate CcbHLHs that were highly conserved compared to the TT8 protein in A. thaliana. These TFs are potentially involved in anthocyanin biosynthesis in C. camphora. RNA-seq analysis revealed specific expression patterns of CcbHLHs in different tissue types. Furthermore, we verified expression patterns of seven CcbHLHs (CcbHLH001, CcbHLH015, CcbHLH017, CcbHLH022, CcbHLH101, CcbHLH118, and CcbHLH134) in various tissue types at different growth stages using qRT-PCR. This study opens a new avenue for subsequent research on anthocyanin biosynthesis regulated by CcbHLH TFs in C. camphora.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cinnamomum camphora , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Antocianinas , Cinnamomum camphora/metabolismo , Filogenia , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
8.
Biochem Biophys Res Commun ; 593: 122-128, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35063767

RESUMO

Chemoresistance is a major obstacle faced by oesophageal cancer patients and is synonymous with a poor prognosis. MCL1 is a pivotal member of the anti-apoptotic Bcl-2 protein family, which has been found to play an important role in cell survival, proliferation, differentiation and chemoresistance. Thus, it might be an ideal target for treating oesophageal cancer patients. Although it is known that MCL1 is degraded via the ubiquitin-proteasome system, the deubiquitylating enzyme (DUB) responsible for stabilizing MCL1 remains elusive to date. Herein, we demonstrate that Ubiquitin-Specific Protease 20 (USP20) is a novel regulator of the apoptotic signaling pathway. Moreover, USP20 could regulate the deubiquitination of MCL1 to, in turn, regulate its stability. Increased expression of USP20 was correlated with increased levels of MCL1 protein in human patient samples. In addition, depletion of USP20 could increase the polyubiquitination of MCL1, thereby increasing the conversion rate of MCL1 and the sensitivity of cells to chemotherapy. Overall, our findings indicate that the USP20-MCL1 axis might play a key role in the apoptotic signaling pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Células HEK293 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Complexo de Endopeptidases do Proteassoma , Estabilidade Proteica , Transdução de Sinais , Sorafenibe/farmacologia , Células Tumorais Cultivadas , Ubiquitina Tiolesterase/genética , Ubiquitinação
9.
Circulation ; 142(23): 2240-2258, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33070627

RESUMO

BACKGROUND: Cardiac hypertrophy is a key biological response to injurious stresses such as pressure overload and, when excessive, can lead to heart failure. Innate immune activation by danger signals, through intracellular pattern recognition receptors such as nucleotide-binding oligomerization domain 1 (Nod1) and its adaptor receptor-interacting protein 2 (RIP2), might play a major role in cardiac remodeling and progression to heart failure. We hypothesize that Nod1/RIP2 are major contributors to cardiac hypertrophy, but may not be sufficient to fully express the phenotype alone. METHODS: To elucidate the contribution of Nod1/RIP2 signaling to cardiac hypertrophy, we randomized Nod1-/-, RIP2-/-, or wild-type mice to transverse aortic constriction or sham operations. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS: Nod1 and RIP2 proteins were upregulated in the heart after transverse aortic constriction, and this was paralleled by increased expression of mitochondrial proteins, including mitochondrial antiviral signaling protein (MAVS). Nod1-/- and RIP2-/- mice subjected to transverse aortic constriction exhibited better survival, improved cardiac function, and decreased cardiac hypertrophy. Downstream signal transduction pathways that regulate inflammation and fibrosis, including NF (nuclear factor) κB and MAPK (mitogen-activated protein kinase)-GATA4/p300, were reduced in both Nod1-/- and RIP2-/- mice after transverse aortic constriction compared with wild-type mice. Coimmunoprecipitation of extracted cardiac proteins and confocal immunofluorescence microscopy showed that Nod1/RIP2 interaction was robust and that this complex also included MAVS as an essential component. Suppression of MAVS expression attenuated the complex formation, NF κB signaling, and myocyte hypertrophy. Interrogation of mitochondrial function compared in the presence or ablation of MAVS revealed that MAVS serves to suppress mitochondrial energy output and mediate fission/fusion related dynamic changes. The latter is possibly linked to mitophagy during cardiomyocytes stress, which may provide an intriguing link between innate immune activation and mitochondrial energy balance under stress or injury conditions. CONCLUSIONS: We have identified that innate immune Nod1/RIP2 signaling is a major contributor to cardiac remodeling after stress. This process is critically joined by and regulated through the mitochondrial danger signal adapter MAVS. This novel complex coordinates remodeling, inflammatory response, and mitochondrial energy metabolism in stressed cardiomyocytes. Thus, Nod1/RIP2/MAVS signaling complex may represent an attractive new therapeutic approach toward heart failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Cardiomegalia/imunologia , Metabolismo Energético/fisiologia , Imunidade Inata/fisiologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais/fisiologia
10.
Biochem Biophys Res Commun ; 574: 48-55, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34438346

RESUMO

Survivin is the key component of the chromosomal passenger complex and plays important roles in the regulation of cell division. Survivin has also been implicated in the regulation of apoptosis and tumorigenesis. Although the survivin protein has been reported to be degraded by a ubiquitin/proteasome-dependent mechanism, whether there is a DUB that is involved in the regulation of its protein stability is largely unknown. Using an expression library containing 68 deubiquitinating enzymes, we found that ubiquitin-specific-processing protease 35 (USP35) regulates survivin protein stability in an enzymatic activity-dependent manner. USP35 interacted with and promoted the deubiquitination of the survivin protein. USP38, an ortholog of USP35 encoded by the human genome, is also able to regulate survivin protein stability. Moreover, we found that the deubiquitinating enzyme DUBAI, the Drosophila homolog of human USP35, is able to regulate the protein stability of Deterin, the Drosophila homolog of survivin. Interestingly, USP35 also regulated the protein stability of Aurora B and Borealin which are also the component of the chromosomal passenger complex. By regulating protein stabilities of chromosomal passenger complex components, USP35 regulated cancer cell proliferation. Taken together, our work uncovered an evolutionarily conserved relationship between USP35 and survivin that might play an important role in cell proliferation.


Assuntos
Endopeptidases/metabolismo , Survivina/metabolismo , Proliferação de Células , Células Cultivadas , Endopeptidases/genética , Humanos , Estabilidade Proteica , Survivina/genética
11.
Biochem Biophys Res Commun ; 533(4): 1115-1121, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33036755

RESUMO

Inorganic pyrophosphatase (PPase) plays an essential role in energy conservation and provides energy for many biosynthetic pathways. Here, we present two three-dimensional structures of PPase from Homo sapiens (Hu-PPase) at 2.38 Å and 3.40 Å in different crystallization conditions. One of the Hu-PPase structures complex of two magnesium metal ions was determined to be a monomer (Hu-PPase-mono) here, while the other one to be a dimer-dimer (Hu-PPase-dd). In each asymmetric unit of Hu-PPase-mono, there are four α-helices and ten ß-strands and folds as a barrel structure, and the active site contains two magnesium ions. Like PPases from many species, we found that Hu-PPase was able to undergo self-assembly. To our surprise, disruption of the self-assembly of Hu-PPase did not influence its enzymatic activity or the ability to promote cell growth. Our work uncovered that different structure forms of Hu-PPase and found that the pyrophosphatase activity of Hu-PPase is independent of its self-assembly.


Assuntos
Proliferação de Células/genética , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/metabolismo , Magnésio/química , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Dimerização , Células HEK293 , Células HeLa , Humanos , Pirofosfatase Inorgânica/genética , Modelos Moleculares , Conformação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes
12.
Cancer Cell Int ; 19: 222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467488

RESUMO

BACKGROUND: Myeloid cell leukaemia 1 (MCL1) is a pro-survival Bcl-2 family protein that plays important roles in cell survival, proliferation, differentiation and tumourigenesis. MCL1 is a fast-turnover protein that is degraded via an ubiquitination/proteasome-dependent mechanism. Although several E3 ligases have been discovered to promote the ubiquitination of MCL1, the deubiquitinating enzyme (DUB) that regulates its stability requires further investigation. METHODS: The immunoprecipitation was used to determine the interaction between OTUD1 and MCL1. The ubiquitination assays was performed to determine the regulation of MCL1 by OTUD1. The cell viability was used to determine the regulation of BH3-mimetic inhibitor induced cell death by OTUD1. The survival analysis was used to determine the relationship between OTUD1 expression levels and the survival rate of cancer patients. RESULTS: By screening a DUB expression library, we determined that the deubiquitinating enzyme OTUD1 regulates MCL1 protein stability in an enzymatic-activity dependent manner. OTUD1 interacts with MCL1 and promotes its deubiquitination. Knockdown of OTUD1 increases the sensitivity of tumour cells to the BH3-mimetic inhibitor ABT-263, while overexpression of OTUD1 increases tumour cell tolerance of ABT-263. Furthermore, bioinformatics analysis data reveal that OTUD1 is a negative prognostic factor for liver cancer, ovarian cancer and specific subtypes of breast and cervical cancer. CONCLUSIONS: The deubiquitinating enzyme OTUD1 antagonizes BH3-mimetic inhibitor induced cell death through regulating the stability of the MCL1 protein. Thus, OTUD1 could be considered as a therapeutic target for curing these cancers.

13.
J Cell Mol Med ; 20(6): 1086-94, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26992120

RESUMO

Injury of myocardium during ischaemia/reperfusion (I/R) is a complex and multifactorial process involving uncontrolled protein phosphorylation, nitration/nitrosylation by increased production of nitric oxide and accelerated contractile protein degradation by matrix metalloproteinase-2 (MMP-2). It has been shown that simultaneous inhibition of MMP-2 with doxycycline (Doxy) and myosin light chain kinase (MLCK) with ML-7 at subthreshold concentrations protects the heart from contractile dysfunction triggered by I/R in a synergistic manner. In this study, we showed that additional co-administration of nitric oxide synthase (NOS) inhibitor (1400W or L-NAME) in subthreshold concentrations improves this synergistic protection in the model of hypoxia-reoxygenation (H-R)-induced contractile dysfunction of cardiomyocytes. Isolated cardiomyocytes were subjected to 3 min. of hypoxia and 20 min. of reoxygenation in the presence or absence of the inhibitor cocktails. Contractility of cardiomyocytes was expressed as myocyte peak shortening. Inhibition of MMP-2 by Doxy (25-100 µM), MLCK by ML-7 (0.5-5 µM) and NOS by L-NAME (25-100 µM) or 1400W (25-100 µM) protected myocyte contractility after H-R in a concentration-dependent manner. Inhibition of these activities resulted in full recovery of cardiomyocyte contractility after H-R at the level of highest single-drug concentration. The combination of subthreshold concentrations of NOS, MMP-2 and MLCK inhibitors fully protected cardiomyocyte contractility and MLC1 from degradation by MMP-2. The observed protection with addition of L-NAME or 1400W was better than previously reported combination of ML-7 and Doxy. The results of this study suggest that addition of NOS inhibitor to the mixture of inhibitors is better strategy for protecting cardiomyocyte contractility.


Assuntos
Cardiotônicos/farmacologia , Inibidores Enzimáticos/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Quinase de Cadeia Leve de Miosina/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Animais , Azepinas , Hipóxia Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Sinergismo Farmacológico , Iminas/farmacologia , Immunoblotting , Masculino , Contração Miocárdica/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Naftalenos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxigênio , Ratos Sprague-Dawley
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565386

RESUMO

The Epstein-Barr virus (EBV) is implicated in several cancers, including EBV-associated gastric cancer (EBVaGC). This study focuses on EBV-encoded BALF1 (BamH1 A fragment leftward reading frame 1), a key apoptosis regulator in EBV-related cancers, whose specific impact on EBVaGC was previously unknown. Our findings indicate that BALF1 overexpression in gastric cancer cells significantly enhances their proliferation, migration, and resistance to chemotherapy-induced apoptosis, confirming BALF1's oncogenic potential. A novel discovery is that BALF1 undergoes degradation via the ubiquitin-proteasome pathway. Through analysis of 69 deubiquitinating enzymes (DUBs), ovarian tumor protease (OTU) domain-containing protein 1 (OTUD1) emerged as a vital regulator for maintaining BALF1 protein stability. Furthermore, BALF1 was found to play a role in regulating the stability of the B-cell lymphoma-2 (Bcl-2) protein, increasing its levels through deubiquitination. This mechanism reveals BALF1's multifaceted oncogenic role in gastric cancer, as it contributes both directly and indirectly to cancer progression, particularly by stabilizing Bcl-2, known for its anti-apoptotic characteristics. These insights significantly deepen our understanding of EBV's involvement in the pathogenesis of gastric cancer. The elucidation of OTUD1's role in BALF1 regulation and its influence on Bcl-2 stabilization provide new avenues for therapeutic intervention in EBVaGC, bridging the gap between viral oncogenesis and cellular protein regulation and offering a more holistic view of gastric cancer development under the influence of EBV.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Neoplasias Gástricas , Ubiquitinação , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Linhagem Celular Tumoral , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proliferação de Células , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/genética , Estabilidade Proteica , Movimento Celular , Animais , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/genética , Proteínas Virais Reguladoras e Acessórias
15.
Eur J Surg Oncol ; 49(12): 107118, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844471

RESUMO

BACKGROUND: Early recurrence (ER) is a significant concern following curative resection of advanced colorectal cancer (CRC) and is linked to poor long-term survival. Reliable prediction of ER is challenging, necessitating the development of a novel radiomics-based nomogram for CRC patients. METHODS: We enrolled 405 patients, with 298 in the training set and 107 in the external test set. Radiomic features were extracted from preoperative venous-phase computed tomography (CT) images. A radiomics signature was created using univariate logistic regression analyses and the least absolute shrinkage and selection operator algorithm. Clinical factors were integrated into the analyses to develop a comprehensive predictive tool in a multivariate logistic regression model, resulting in a radiomics nomogram. Subsequently, the calibration, discrimination, and clinical usefulness of the nomogram were evaluated. RESULTS: The radiomics signature, consisting of four selected CT features, was significantly associated with ER in both the training and test datasets (P < 0.05). Independent predictors of ER included TNM stage, carcinoembryonic antigen level and differentiation grade were identified. The radiomics nomogram, incorporating all these predictors, exhibited good predictive ability in both the training set with an area under the curve (AUC) of 0.82 (95 % confidence interval (CI), 0.74-0.90) and the test set with an AUC of 0.85 (95 % CI, 0.72-0.99), surpassing the performance of any single candidate factor alone. Furthermore, additional analysis demonstrated that the nomogram was clinically useful. CONCLUSIONS: We have developed a radiomics-based nomogram that effectively predicts early recurrence in CRC patients, enhancing the potential for timely intervention and improved outcomes.


Assuntos
Neoplasias Colorretais , Nomogramas , Humanos , Tomografia Computadorizada por Raios X/métodos , Veias , Algoritmos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/cirurgia
16.
Eur J Cancer ; 194: 113337, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37862797

RESUMO

AIM: Epstein-Barr virus-associated intrahepatic cholangiocarcinoma (EBVaICC) has a distinct genomic profile and increased CD3+ and CD8+ T cells infiltration. However, the efficacy of immunotherapy in EBVaICC remains largely unknown. This study aimed to assess the efficacy of programmed cell death protein 1 (PD-1) antibody therapy in EBVaICC. METHODS: Patients with metastatic biliary tract cancer (BTC) diagnosed at Sun Yat-sen University Cancer Center from January 2016 to December 2021 were identified. In situ hybridisation was performed to detect EBV. Overall survival (OS) and progression-free survival (PFS) were measured. RESULTS: A total of 698 patients with metastatic BTC were identified, of whom 39 (5.6%) had EBVaICC. Among the 136 patients who were not administered PD-1 antibody, the OS was similar between patients with EBVaICC and EBV-negative ICC (median OS 12.5 versus 9.5 months, respectively; P = 0.692). For the 205 patients who were administered PD-1 antibody, patients with EBVaICC had significantly longer OS than patients with EBV-negative ICC (median OS 24.9 versus 11.9 months, respectively; P = 0.004). Seventeen patients with EBVaICC were administered PD-1 antibody. Eight patients (47%) achieved a partial response, and 17 patients achieved disease control. The median PFS was 17.5 months. CONCLUSIONS: This study identified a clinically actionable subset of patients with EBVaICC with a promising response to the PD-1 antibody.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4 , Infecções por Vírus Epstein-Barr/complicações , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/patologia , Imunoglobulinas , Ductos Biliares Intra-Hepáticos/patologia
17.
Proteomics ; 12(14): 2366-77, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685060

RESUMO

Ischemia/reperfusion (I/R) injury is a major consequence of a cardiovascular intervention. The study of changes of the left and right ventricle proteomes from hearts subjected to I/R may be a key to revealing the pathological mechanisms underlying I/R-induced heart contractile dysfunction. Isolated rat hearts were perfused under aerobic conditions or subjected to 25 min global ischemia and 30 min reperfusion. At the end of perfusion, right and left ventricular homogenates were analyzed by 2DE. Contractile function and coronary flow were significantly reduced by I/R. 2DE followed by mass spectrometry identified ten protein spots whose levels were significantly different between aerobic left and right ventricles, eight protein spots whose levels were different between aerobic and I/R left ventricle, ten protein spots whose levels were different between aerobic and I/R right ventricle ten protein spots whose levels were different between the I/R groups. Among these protein spots were ATP synthase beta subunit, myosin light chain 2, myosin heavy chain fragments, peroxiredoxin-2, and heat shock proteins, previously associated with cardiovascular disease. These results reveal differences between proteomes of left and right ventricle both under aerobic conditions and in response to I/R that contribute to a better understanding of I/R injury.


Assuntos
Ventrículos do Coração/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Proteínas/análise , Proteoma/análise , Aerobiose , Análise de Variância , Animais , Circulação Coronária , Eletroforese em Gel Bidimensional , Ventrículos do Coração/química , Concentração de Íons de Hidrogênio , Immunoblotting , Masculino , Contração Miocárdica , Miocárdio/química , Proteínas/química , Proteômica , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Estatísticas não Paramétricas
18.
Biomed Pharmacother ; 148: 112717, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35193039

RESUMO

Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes. Symptoms of DPN mainly include spontaneous intractable pain that is diffuse and continuous and can last from several weeks to several months. DPN is associated with a high mortality rate and poor prognosis. Its pathogenesis is not fully understood, and clinical treatment is focused on relieving its clinical symptoms, as well as improving blood sugar control and cardiovascular risk factors. DPN and its clinically effective treatments need to be studied. This study discusses the treatment methods and pathogenesis of DPN, summarizes the related research progress, and attempts to provide a reference for DPN research.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/tratamento farmacológico , Humanos , Dor/complicações , Resultado do Tratamento
19.
Biomed Pharmacother ; 153: 113493, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076508

RESUMO

Natural polypeptides, a kind of molecular polymer with obvious biological activity, are widely existing in nature. They participate in various physiological activities of living organisms and play an important role in promoting human health. They are also widely applied in medicine, food, and cosmetic industries. By searching literature from Pubmed, Google Scholar, Web of Science, Springer Link and Elsevier, this work presents an overview of the preparation methods, the relationship between structure and function, and the application of natural polypeptides. The preparation methods mainly include solvent extraction, enzymatic decomposition, microbiological fermentation, chemical synthesis, genetic engineering recombination, and using cell free system. Natural polypeptide's physiological function mainly includes antioxidative, antibacterial, antihypertensive. This review could provide scientific basis for the research and development of natural polypeptide.


Assuntos
Anti-Hipertensivos , Peptídeos , Humanos , Peptídeos/química , Polímeros
20.
Front Pharmacol ; 13: 1055248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561346

RESUMO

Ischemic heart disease (IHD) is a high-risk disease in the middle-aged and elderly population. The ischemic heart may be further damaged after reperfusion therapy with percutaneous coronary intervention (PCI) and other methods, namely, myocardial ischemia-reperfusion injury (MIRI), which further affects revascularization and hinders patient rehabilitation. Therefore, the investigation of new therapies against MIRI has drawn great global attention. Within the long history of the prevention and treatment of MIRI, traditional Chinese medicine (TCM) has increasingly been recognized by the scientific community for its multi-component and multi-target effects. These multi-target effects provide a conspicuous advantage to the anti-MIRI of TCM to overcome the shortcomings of single-component drugs, thereby pointing toward a novel avenue for the treatment of MIRI. However, very few reviews have summarized the currently available anti-MIRI of TCM. Therefore, a systematic data mining of TCM for protecting against MIRI will certainly accelerate the processes of drug discovery and help to identify safe candidates with synergistic formulations. The present review aims to describe TCM-based research in MIRI treatment through electronic retrieval of articles, patents, and ethnopharmacology documents. This review reported the progress of research on the active ingredients, efficacy, and underlying mechanism of anti-MIRI in TCM and TCM formulas, provided scientific support to the clinical use of TCM in the treatment of MIRI, and revealed the corresponding clinical significance and development prospects of TCM in treating MIRI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA