RESUMO
Although the photocatalytic reduction of Cr(VI) to Cr(III) by traditional powder photocatalysts is a promising method, the difficulty and poor recovery of photocatalysts from water hinder their wide practical applications. Herein, we present that FeC2O4/Bi2.15WO6 (FeC2O4/BWO) composites were tightly bonded to modified polyvinylidene fluoride (PVDF) membranes by chemical grafting with the aid of polyvinyl alcohol (PVA) to form photocatalytic composite membranes (PVDF@PVA-FeC2O4/BWO). The contact angle of PVDF@PVA-FeC2O4/BWO (0.06 wt % of FeC2O4/BWO) is 48.0°, which is much lower than that of the pure PVDF membrane (80.5°). Meanwhile, the permeate flux of 61.43 g m-2 h-1 and water flux of 250.60 L m-2 h-1 were observed for PVDF@PVA-FeC2O4/BWO composite membranes. The tensile strength of composite membranes reached 48.84 MPa, which was 9.8 times higher than that of PVDF membrane. It was found that the PVDF@PVA-FeC2O4/BWO membrane exhibited excellent photocatalytic Cr(VI) reduction performance under both simulated and real sunlight irradiation. The adsorption for Cr(VI) by PVDF@PVA-FeC2O4/BWO can reach 47.6% in the dark process within 30 min, and the removal percentage of Cr(VI) could reach 100% with a rate constant k value of 0.2651 min-1 after 10 min of light exposure, indicating a synergistic effect of adsorption and photoreduction for Cr(VI) removal by the composite membrane. The PVDF@PVA-FeC2O4/BWO membrane had good stability and reusability after seven consecutive cycles. Most importantly, the influences of foreign ions on Cr(VI) reduction were investigated to mimic real sewage, which revealed that no obvious adverse effects can be found with the presence of common foreign ions in sewage. The photocatalytic membrane material developed in this study provides a new idea for treating Cr(VI)-containing wastewater and has a more significant application prospect.
RESUMO
In harsh environments, it is crucial to design personal protective materials that possess both puncture/cut resistance and chemical resistance. In order to fulfill these requirements, this study introduces an innovative approach that combines hydrophobically modified rigid nanoparticles with thermoplastic polyurethane elastomers. These materials are then laminated with high-performance aramid fabrics through a scraping process, resulting in a multifunctional composite with puncture/cut resistance, superhydrophobicity, self-cleaning properties, and acid/alkali resistance. The quasi-static puncture tests conducted reveal the remarkable performance of the composite. The maximum spike puncture resistance reaches 267.62 N, which is 17.14 times higher than that of the pure fabric (15.61 N). Similarly, the maximum knife puncture resistance reaches 115.02 N, exhibiting a 5.01 times increase compared to that of the pure aramid fabric (22.97 N). Furthermore, the results obtained from the yarn pull-out, fabric burst strength, and tearing experiments demonstrate that the incorporation of rigid nanoparticles significantly enhances the friction between the yarns, enabling a greater number of yarns to participate in the dissipation of impact energy. As a result, the puncture resistance of the fabric is greatly improved. Significantly, the composite exhibits sustained superhydrophobicity even after exposure to harsh chemicals such as concentrated sulfuric acid and sodium hydroxide as well as undergoing cyclic mechanical wear. These findings highlight the composite's exceptional durability and resistance to corrosion. Overall, this study offers insights and methods for the development of multifunctional flexible puncture-resistant equipment for individuals.
RESUMO
Removal of organic solvents and heavy metals in effluents is of great significance to environmental pollution control and ecological civilization construction. pH-responsive materials have unique advantages in treating complicated oily wastewater. In this work, an intelligent pH-responsive nonwoven fabric with excellent reversible wettability was prepared. The pH-sensitive polymer was synthesized by free radical polymerization (FRP) technique, then dipped with SiO2 on PP fabric. The particular molecular structure of poly (dimethylaminoethyl methacrylate) (PDMAEMA) enabled the fabric surface to switch wettability rapidly between hydrophilic/underwater oleophobic and oleophobic/hydrophobic under pH stimulus and exhibit controllable selective separation of various oil/water mixtures. Furthermore, the fabric removed Pb2+ efficiently under a wide pH range. The experimetal results showed that the separation flux reached 19,229 ± 1656.43 L-h-1-m-2 for water and 19,342 ± 1796.77 L-m-2-h-1 for n-hexane. Besides, the obtained fabric effectively realized the separation and collection process of complex ternary mixtures. The fabric removed Pb2+ in solutions with efficiency up to 90.83%. After immersing in acid and alkali solutions for 24 h, no significant damage to the surface wettability. This economical and intelligent fabric is able to meet the different separation purposes of industrial wastewaters with complex compositions.
Assuntos
Metais Pesados , Águas Residuárias , Álcalis , Concentração de Íons de Hidrogênio , Chumbo , Metacrilatos , Polímeros , Dióxido de Silício , Solventes , Águas Residuárias/química , MolhabilidadeRESUMO
Inspired by fish scales, this study prepares a thermo-responsive underwater oleophobic PNIPAM/PAN/TiO2 nanofibrous membranes by traditional electrospinning technique using poly-N-isopropylacrylamide (PNIPAM) and polyacrylonitrile (PAN). Thermal properties, mechanical properties, surface chemical composition, wettability, photocatalysis, and oil/water separation of PNIPAM/PAN/TiO2 membrane are explored compared to pure PNIPAM membrane. Result reveals that PAN/TiO2 compounds make PNIPAM membrane with a smaller fiber diameter of 141 nm and high tensile stress of 7.4 MPa, and also decompose 98% of rhodamine B after UV light radiation. This bioinspired design structure endows the membrane with superhydrophilicity with a low water contact angle, and underwater superoleophobicity with a high oil contact angle of 157° (petroleum ether) and 151° (dichloromethane). This membrane can efficiency separate oil/water mixture with a high separation efficiency. Moreover, the resultant PNIPAM/PAN/TiO2 membrane has the bionic fish scale structure, and has wettability respond at lower critical solution temperature making the water flux decreased from 10013 ± 367 L m-2·h-1 to 7713 ± 324 L m-2·h-1, and thus has a potential to be used in purification of reclaimed water and separation of oil from water.
Assuntos
Nanofibras , Óleos , Resinas Acrílicas , Animais , TitânioRESUMO
This study aims to construct tissue engineering stents by using the long fiber-reinforced thermoplastic (LFT) technique to develop artery stents. The experimental method combines fibers, the LFT technique, and electrospinning technique. First, the biodegradable polyvinyl alcohol yarns are twisted and coated in polycaprolactone/polyethylene glycol blends through the LFT technique. Next, the weft-knitting and heat treatment are used to establish the stent structure, after which poly(ethylene oxide) (PEO) is electrospun to coat the stents. The morphology, mechanical, and biological properties of tissue engineering stents are evaluated. The test results indicated that the use of the LFT technique retains the softness of filaments, which facilitates the subsequent weft-knitting process. The coating of blends and electrospinning of PEO have a positive influence on the tissue engineering stents, as demonstrated by the tensile strength of 59.93 N and compressive strength of 6.10 N. Moreover, the in vitro degradation of stents exhibits a stabilized process. The water contact angle is 20.33°, and the cell survival rate in 24 h is over 80%. The proposed tissue engineering stents are good candidates for artery stent structure.
Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Animais , Varredura Diferencial de Calorimetria , Força Compressiva , Eletroquímica , Fibroblastos , Temperatura Alta , Humanos , Hidrólise , Teste de Materiais/métodos , Camundongos , Plásticos , Poliésteres/química , Polietilenoglicóis/química , Álcool de Polivinil , Espectroscopia de Infravermelho com Transformada de Fourier , Stents , Estresse Mecânico , Resistência à Tração , Alicerces Teciduais/química , Difração de Raios XRESUMO
Poly[2-( tert-butylaminoethyl) methacrylate] (PTA), an important class of antimicrobial polymers, has demonstrated its great biocidal efficiency, favorable nontoxicity, and versatile applicability. To further enhance its antimicrobial efficiency, an optimization of the chemical structure of PTA polymers is performed via atom transfer radical polymerization (ATRP) in terms of the antimicrobial ability against Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). After the optimization, the resulting PTA is blended into a polylactide (PLA) matrix to form PTA/PLA composite thin films. It is first found, that the antimicrobial efficiency of PTA/PLA composites was significantly enhanced by controlling the PLA crystallinity and the PLA spherulite size. A possible mechanistic route regarding this new finding has been rationally discussed. Lastly, the cytotoxicity and mechanical properties of a PTA/PLA composite thin film exhibiting the best biocidal effect are evaluated for assessing its potential as a new material for creating antimicrobial biomedical devices.
Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Nanocompostos/química , Poliésteres/química , Polímeros/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
An attempt to maintain the three-dimensional space into restorative sites through the conveniently pack porous fillers are general used strategy. Advancement in the manufacturing protective shells in the scaffolds, which would be filled with brittle ceramic grafts for the development of highly connective pores provides the approach to solve crack problem for generating the tissues. Therefore, multilayered braided and alkalized poly(lactic acid) (PLA) composites with calcium phosphate bone cement (CPC) were synthesized and compared. The PLA/CPC composites were divided into various groups according to a series of heat-treatment temperatures (100-190 °C) and periods (1-3 h) and then characterized. The effects of 24-h immersion on the strength decay resistance of the samples were compared. Results showed that the residual oil capped on the surfaces of alkalized PLA braid was removed, and the structure was unaltered. However, the reduced tensile stress of alkalized PLA braids was due to ester-group formation by hydrolysis. Mechanical test results of PLA/CPC composites showed that the strength significantly increased after heat treatment, except when the heating temperature was higher than the PLA melting point at approximately 160-170 °C. The degree of PLA after recrystallization became higher than that of unheated composites, thereby leading to reduced strength and toughness of the specimen. Braiding fibers of biodegradable PLA reinforced and toughened the structure particularly of the extra-brittle material of thin-sheet CPC after implantation.
Assuntos
Cimentos Ósseos , Substitutos Ósseos/química , Ácido Láctico , Teste de Materiais , Polímeros , Fosfatos de Cálcio , Cerâmica , PoliésteresRESUMO
Combining photodynamic antimicrobials with nonwovens is prospective. However, common photosensitizers still have drawbacks such as poor photoactivity and the inability to charge. In this study, a photodynamic and high-efficiency antimicrobial protective material was prepared by grafting bis benzophenone-structured 4,4-terephthaloyl diphthalic anhydride (TDPA) photosensitizer, and antimicrobial agent chlorogenic acid (CA) onto spunbond-meltblown-spunbond (SMS) membranes. The charging rates for ·OH and H2O2 were 6377.89 and 913.52 µg/g/h. The light absorption transients structural storage remained above 69% for 1 month. High electrical capacity remained after seven cycles indicating its rechargeability and recyclability. The SMS/TDPA/CA membrane has excellent bactericidal performance when under illumination or lightless conditions, and the bactericidal efficiency of Escherichia coli and Staphylococcus aureus reached over 99%. The construction of self-disinfection textiles based on the photodynamic strategies proposed in this paper is constructive for expanding and promoting the application of textile materials in the medical field.
Assuntos
Antibacterianos , Escherichia coli , Luz , Fármacos Fotossensibilizantes , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Escherichia coli/efeitos dos fármacos , Têxteis , Ácido Clorogênico/farmacologia , Ácido Clorogênico/química , Testes de Sensibilidade MicrobianaRESUMO
Laminated composites have been commonly applied to all fields. When made into laminated composites, Kevlar woven fabrics are able to provide the required functions. In this study, two types of TPU are incorporated to improve the intralayer features of Kevlar/TPU laminated composites. Hence, the Kevlar/TPU laminated composites consist of firmly bonded laminates while retaining flexibility of the fabrics. Being the interlayer of the laminated composites, the TPU layer provides adhesion while strengthening the tensile property, dynamic puncture resistance, and buffer strength of Kevlar/TPU laminated composites. The test results indicate that with a blending ratio of two types of TRU being 85/15 wt%, the Kevlar/TPU laminated composites exhibit a tensile strength of 18.08 MPa. When the stacking thickness is 1 mm, the tensile strength is improved to 357.73 N with the buffering strength reaching 4224.40 N. Notably, with a thickness being 1.2 mm, the laminated composites demonstrate a dynamic resistance being 672.15 N. In the meanwhile, functional Kevlar fabrics are allowed to keep the fiber morphology owing to the protection of TPU composite films. Considering the composition of protective gear, Kevlar/TPU laminated composites possess a powerful potential and are worthwhile exploring.
RESUMO
A significant amount of research has been conducted on applying functional materials as surgical sutures. Therefore, research on how to solve the shortcomings of surgical sutures through available materials has been given increasing attention. In this study, hydroxypropyl cellulose (HPC)/PVP/zinc acetate nanofibers were coated on absorbable collagen sutures using an electrostatic yarn winding technique. The metal disk of an electrostatic yarn spinning machine gathers nanofibers between two needles with positive and negative charges. By adjusting the positive and negative voltage, the liquid in the spinneret is stretched into fibers. The selected materials are toxicity free and have high biocompatibility. Test results indicate that the nanofiber membrane comprises evenly formed nanofibers despite the presence of zinc acetate. In addition, zinc acetate can effectively kill 99.9% of E. coli and S. aureus. Cell assay results indicate that HPC/PVP/Zn nanofiber membranes are not toxic; moreover, they improve cell adhesion, suggesting that the absorbable collagen surgical suture is profoundly wrapped in a nanofiber membrane that exerts antibacterial efficacy and reduces inflammation, thus providing a suitable environment for cell growth. The employment of electrostatic yarn wrapping technology is proven effective in providing surgical sutures with antibacterial efficacy and a more flexible range of functions.
RESUMO
The human body is in a complex environment affected by body heat, light, and sweat, requiring the development of a wearable multifunctional textile for human utilization. Meanwhile, the traditional thermoelectric yarn is limited by expensive and scarce inorganic thermoelectric materials, which restricts the development of thermoelectric textiles. Therefore, in this paper, photothermoelectric yarns (PPDA-PPy-PEDOT/CuI) using organic poly(3,4-ethylenedioxythiophene) (PEDOT) and inorganic thermoelectric material cuprous iodide (CuI) are used for the thermoelectric layer and poly(pyrrole) (PPy) for the light-absorbing layer. With the introduction of PPy, the temperature difference of the photothermoelectric yarn can be increased for a better voltage output. Subsequently synergizing the photothermoelectric effect with the hydrovoltaic effect to create higher electric potentials, a single wet photothermoelectric yarn obtained by preparation can be irradiated under an infrared lamp at a voltage of up to 0.47 V. Finally, the photothermoelectric yarn PPDA-PPy-PEDOT/CuI was assembled in a series and parallel to obtain a photothermoelectric yarn panel, which was able to output 41.19 mV under an infrared lamp, and the synergistic photothermoelectric and hydrovoltaic effects of the photothermoelectric panel were tested outdoors on human body, and we found that the voltage was able to reach approximately 0.16 V under sunlight. Therefore, the voltage values obtained from the photothermoelectric yarns in this study are competitive and provide a new research idea for the study of photothermoelectric yarns.
RESUMO
Directional drug delivery and sufficient strength are two conditions that need to be met for wound dressing. In this paper, an oriented fibrous alginate membrane with sufficient strength was constructed via coaxial microfluidic spinning, and zeolitic imidazolate framework-8/ascorbic acid was used to realize drug delivery and antibacterial activity. The effects of the process parameters of the coaxial microfluidic spinning on the mechanical properties of the alginate membrane were discussed. In addition, it was found that the antimicrobial activity mechanism of zeolitic imidazolate framework-8 was attributed to the disruptive effect of reactive oxygen species (ROS) on bacteria, and the quantitative amount of generated ROS were evaluated by detecting â¢OH and H2O2. Furthermore, a mathematical drug diffusion model was established and showed high consistency with the experimental data (R2 = 0.99). This study provides a new idea for the preparation of dressing materials with high strength and directional drug delivery and also provides some guidance for the development of coaxial microfluidic spin technology to be used in functional materials for drug release.
Assuntos
Alginatos , Microfluídica , Liberação Controlada de Fármacos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Antibacterianos/farmacologiaRESUMO
In this work, TiO2 nanofiber membrane (NFM) with a complete surface microstructure was prepared through regulating the surface microstructure of TiO2 NFM by doping Zr. The crystal structures and morphological analyses indicated that the nanofiber membranes were consisted by disordered accumulation of Zr-doped TiO2 nanofibers with a crack-free surface, small grain size and high aspect ratio. When the doping amount of Zr was 0.8 mL, the tensile strength of the doped membranes reached 1.27 MPa, which was 60.7% higher than that of pure TiO2 NFM. The photocatalytic performance of Zr-doped TiO2 NFM was evaluated by the degradation performance of Methylene orange (MO) under simulated sunlight irradiation. Compared with the undoped TiO2 NFM, the 0.8-Zr/TiO2 NFM presented a higher catalytic degradation efficiency (improved by 69.6%), and the photocatalytic performance maintained stable after five circulating. It was found that the doping of Zr ions effectively limited the surface crack size and grain size of TiO2 nanofibers, thereby improving the tensile strength, and enhanced the surface area effect and carrier transfer efficiency of TiO2 NFM. On the other hand, a narrow band-gap was obtained by doping a small amount of Zr ions, which expanded the visible light response range to improve the photocatalytic performance of TiO2 nanofibers.
Assuntos
Nanofibras , Nanofibras/química , Luz , Titânio/químicaRESUMO
This study designed a novel co-electrospun cellulose acetate (CA)/thermoplastic polyurethane (TPU) photodynamic helical fiber antibacterial membrane as a potential environmentally friendly medical protective material. A central combined design method (CCD) based on response surface methodology (RSM) was used to analyze essential variables' influence. The optimized parameters for CCD were TPU (wt%) 11.68 %, CA (wt%) 13.89 %, DMAc/ACE volume ratio 0.147, LiCl (wt%) 1.39 %, and voltage (kV) 14.43 V. Pitch and pitch diameter were the response process as the critical output variable. The membranes were characterized by SEM, TG, FT-IR, and molecular structure analysis. The results showed that the photodynamic helical fiber antimicrobial membrane exhibited synergistic effects of the antibacterial photodynamic therapy (APDT) and antimicrobial agent under average daylight irradiation. The release rate of -OH was 98.22 %, and H2O2 was 88.36 % under the action of 20 min of light. The bactericidal rates of S. aureus and E. coli reached 99.9 % and 99.7 %, respectively. The fiber helical structure can increase the light absorption rate, thus increasing the release rate and amount of reactive oxygen species (ROS) species, increasing the antibacterial rate. After washing five times, the antibacterial membrane has excellent antibacterial performance and a dark antibacterial effect.
Assuntos
Escherichia coli , Poliuretanos , Poliuretanos/farmacologia , Poliuretanos/química , Staphylococcus aureus , Espectroscopia de Infravermelho com Transformada de Fourier , Biomimética , Peróxido de Hidrogênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/químicaRESUMO
Nowadays, the hydrogen dressing and electrostatic spun films widely used on wounds do not facilitate the permeability of the wound area and fail to achieve controlled drug delivery. Therefore, finding a wound dressing with both breathability and targeted drug delivery has remained an unmet challenge. Here, an oriented microstructure membrane with sustained drug release and robust antibacterial performance was constructed through the microfluidic spinning method. The multifunctional oriented membrane was prepared by loading ascorbic acid onto the zeolitic metal-organic framework-8 to develop drug delivery nanomaterial zeolitic metal-organic framework-8 @ascorbic acid (ZIF-8 @AA) and then mixing ZIF-8 @AA with polyvinyl pyrrolidone (PVP) solution via microfluidic technology, which produced an oriented microfiber member. In addition, the spinning parameters, including the fluid content, rotation speed, and flow rate, on microfiber diameter were evaluated. The constructed oriented membrane had bactericidal efficiencies of 82.94% ± 2.79% and 95.96% ± 1.54% against E. coli and S. aureus, respectively. After five days, the membrane still has a sustained release. Moreover, the fabricated membrane also has good biocompatibility and hemocompatibility in vitro. The oriented arrangement strategy provides a promising approach for wound healing materials in targeted drug delivery. Furthermore, this strategy offers a feasible idea for loading active materials into substrates for disease treatment in the biomedical field.
Assuntos
Estruturas Metalorgânicas , Zeolitas , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Zeolitas/química , Ácido Ascórbico/farmacologia , Microfluídica , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologiaRESUMO
Bone tissue engineering scaffolds should have bone compatibility, biological activity, porosity, and degradability. In this study, flake-like hydroxyapatite was synthesized by hydrothermal method and mixed with sodium alginate to make a gel, which was injected into a hollow braid. Porous and degradable SA/n-Hap woven scaffolds were prepared by freeze-drying technology. The morphology of hydroxyapatite was characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and x-ray diffraction. The scaffolds were characterized by an improved liquid replacement method, compression test, and degradation test. The results showed that the hydroxyapatite synthesized at 160 °C had a scaly morphology. The prepared scaffold had a pore size of 5-100 µm, a porosity of 60%-70%, and a swelling rate of more than 300%. After 21 d the degradation rate reached 5.54%, and a cell survival rate of 214.98%. In summary, it is feasible to prepare porous bone scaffolds for potential bone tissue engineering. This study shows the feasibility of applying textile structures to the field of tissue scaffolds and provides a new idea for the application structure of tissue engineering scaffolds.
Assuntos
Durapatita , Engenharia Tecidual , Engenharia Tecidual/métodos , Durapatita/química , Alicerces Teciduais/química , Osso e Ossos , Difração de Raios X , Porosidade , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
This study proposes the composites with a sandwich structure that is primarily made by the multi-step foaming process. The staple material is polyurethane (PU) foam that is combined with carbon fibers, followed by a Kevlar woven fabric. The composites are evaluated in terms of puncture resistance, buffer absorption, and electromagnetic wave shielding effectiveness (EMSE). The manufacturing process provides the composites with a stabilized structure efficiently. Serving the interlayer, a Kevlar woven fabric are sealed between a top and a bottom layer consisting of both PU foam and an aluminum film in order, thereby forming five-layered composites. Namely, the upper and lower surfaces of the five-layered sandwiches are aluminum films which is laminated on a purpose for the EMSE reinforcement. The test results indicate that the PU foam composites are well bonded and thus acquire multiple functions from the constituent materials, including buffer absorption, puncture resistance, and EMSE. There is much prospect that the PU foam composites can be used as a protective material in diverse fields owing to a flexible range of functions.
RESUMO
Water pollution, which is caused by leakage of oily substances, has been recognized as one of the most serious global environmental pollutions endangering the ecosystem. High-quality porous materials with superwettability, which are typically constructed in the form of aerogels, hold huge potential in the field of adsorption and removal of oily substances form water. Herein, we developed a facile strategy to fabricate a novel biomass absorbent with a layered tubular/sheet structure for efficient oil/water separation. The aerogels were fabricated by assembling hollow poplar catkin fiber into chitosan sheets using a directional freeze-drying method. The obtained aerogels were further wrapped with -CH3-ended siloxane structures using CH3SiCl3. This superhydrophobic aerogel (CA ≈ 154 ± 0.4°) could rapidly trap and remove oils from water with a large sorption range of 33.06-73.22 g/g. The aerogel facilitated stable oil recovery (90.07-92.34%) by squeezing after 10 sorption-desorption cycles because of its mechanical robustness (91.76% strain remaining after 50 compress-release cycles). The novel design, low cost, and sustainability of the aerogel provide an efficient and environmentally friendly solution for handling oil spills.
RESUMO
Discarded oil-containing absorbents, which has been used in handling oil spills, are tricky to deal with and have rose global environmental concerns regarding release of microplastics. Herein, we developed a facile strategy to fabricate sustainable absorbents by a gas-inflating method, through which 2D electrospinning polycaprolactone nanofiber membranes were directly inflated into highly porous 3D nanofiber/sheet aerogels with layered long fiber structure. The membranes were inflated rapidly from a baseline porosity of 81.98% into 97.36-99.42% in 10-60 min. The obtained aerogels were further wrapped with -CH3 ended siloxane structures using CH3SiCl3. This hydrophobic absorbent (CA ≈ 145°) could rapidly trap oils from water with sorption range of 25.60-42.13 g/g and be recycled by simple squeeze due to its mechanical robustness. As-prepared aerogels also showed high separation efficiency to separate oils from both oil/water mixtures and oil-in-water emulsions (>96.4%). Interestingly, the oil-loaded absorbent after cleaning with absolute ethanol could be re-dissolved in selected solvents and promptly reconstituted by re-electrospinning and gas-inflation. The reconstituted aerogels were used as fire-new oil absorbents for repeated life cycles. The novel design, low cost and sustainability of the absorbent provides an efficient and environmentally-friendly solution for handling oil spills.
RESUMO
In this study, nonwoven fabrics, rigid polyurethane foam (RPUF), Basalt woven fabrics, and an aluminum foil film mold are used to produce multi-functional composite sheets with flame-retardant, sound-absorbing, and electromagnetic-shielding functions. The nonwoven layer is composed of Nomex fibers, flame-retardant PET fibers, and low-melting-point (LMPET) fibers via the needle rolling process. The optimal Nomex fiber/flame-retardant PET fiber/LMPET fiber (N/F/L) nonwoven fabrics are then combined with rigid polyurethane (PU) foam, Basalt woven fabric, and an aluminum foil film mold, thereby producing nonwoven/rigid polyurethane foam/Basalt woven fabric composite sheets that are wrapped in the aluminized foil film. The test results indicate that formed with a foaming density of 60 kg/m3 and 10 wt% of a flame retardant, the composite sheets exhibit electromagnetic interference shielding efficacy (EMI SE) that exceeds 40 dB and limiting oxygen index (LOI) that is greater than 26. The efficient and highly reproducible experimental design proposed in this study can produce multifunctional composite sheets that feature excellent combustion resistance, sound absorption, and EMI SE and are suitable for use in the transportation, industrial factories, and building wall fields.