Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Mol Genet ; 24(21): 6066-79, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26264576

RESUMO

Huntington's disease (HD) is an autosomal-dominant degenerative disease caused by a cytosine-adenine-guanine trinucleotide expansion in the Huntingtin (htt) gene. The most vulnerable brain areas to mutant HTT-evoked toxicity are the striatum and cortex. In spite of the extensive efforts that have been devoted to the characterization of HD pathogenesis, no disease-modifying therapy for HD is currently available. The A2A adenosine receptor (A2AR) is widely distributed in the brain, with the highest level observed in the striatum. We previously reported that stimulation of the A2AR triggers an anti-apoptotic effect in a rat neuron-like cell line (PC12). Using a transgenic mouse model (R6/2) of HD, we demonstrated that A2AR-selective agonists effectively ameliorate several major symptoms of HD. In the present study, we show that human iPSCs can be successfully induced to differentiate into DARPP32-positive, GABAergic neurons which express the A2AR in a similar manner to striatal medium spiny neurons. When compared with those derived from control subjects (CON-iPSCs), these HD-iPSC-derived neurons exhibited a higher DNA damage response, based on the observed expression of γH2AX and elevated oxidative stress. This is a critical observation, because oxidative damage and abnormal DNA damage/repair have been reported in HD patients. Most importantly, stimulation of the A2AR using selective agonists reduced DNA damage and oxidative stress-induced apoptosis in HD-iPSC-derived neurons through a cAMP/PKA-dependent pathway. These findings support our hypothesis that human neurons derived from diseased iPSCs might serve as an important platform to investigate the beneficial effects and underlying mechanisms of A2AR drugs.


Assuntos
Neurônios GABAérgicos/patologia , Doença de Huntington/patologia , Degeneração Neural , Células-Tronco Pluripotentes/patologia , Receptor A2A de Adenosina/metabolismo , Adulto , Apoptose , Caspase 3/metabolismo , Linhagem Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dano ao DNA , Fosfoproteína 32 Regulada por cAMP e Dopamina/biossíntese , Feminino , Neurônios GABAérgicos/metabolismo , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Peróxido de Hidrogênio , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Células-Tronco Pluripotentes/metabolismo , Adulto Jovem
2.
Biochim Biophys Acta ; 1832(6): 742-53, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23416527

RESUMO

Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin (HTT) gene. Brain-type creatine kinase (CKB) is an enzyme involved in energy homeostasis via the phosphocreatine-creatine kinase system. Although downregulation of CKB was previously reported in brains of HD mouse models and patients, such regulation and its functional consequence in HD are not fully understood. In the present study, we demonstrated that levels of CKB found in both the soma and processes were markedly reduced in primary neurons and brains of HD mice. We show for the first time that mutant HTT (mHTT) suppressed the activity of the promoter of the CKB gene, which contributes to the lowered CKB expression in HD. Exogenous expression of wild-type CKB, but not a dominant negative CKB mutant, rescued the ATP depletion, aggregate formation, impaired proteasome activity, and shortened neurites induced by mHTT. These findings suggest that negative regulation of CKB by mHTT is a key event in the pathogenesis of HD and contributes to the neuronal dysfunction associated with HD. In addition, besides dietary supplementation with the CKB substrate, strategies aimed at increasing CKB expression might lead to the development of therapeutic treatments for HD.


Assuntos
Encéfalo/enzimologia , Creatina Quinase Forma BB/biossíntese , Regulação Enzimológica da Expressão Gênica , Doença de Huntington/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Animais , Encéfalo/patologia , Creatina Quinase Forma BB/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Doença de Huntington/terapia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
3.
Cell Mol Life Sci ; 69(24): 4107-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22627493

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. When the number of CAG repeats exceeds 36, the translated polyglutamine-expanded Htt protein interferes with the normal functions of many types of cellular machinery and causes cytotoxicity. Clinical symptoms include progressive involuntary movement disorders, psychiatric signs, cognitive decline, dementia, and a shortened lifespan. The most severe brain atrophy is observed in the striatum and cortex. Besides the well-characterized neuronal defects, recent studies showed that the functions of mitochondria and several key players in energy homeostasis are abnormally regulated during HD progression. Energy dysregulation thus is now recognized as an important pathogenic pathway of HD. This review focuses on the importance of three key molecular determinants (peroxisome proliferator-activated receptor-γ coactivator-1α, AMP-activated protein kinase, and creatine kinase B) of cellular energy homeostasis and their possible involvement in HD pathogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Creatina Quinase Forma BB/fisiologia , Metabolismo Energético , Proteínas de Choque Térmico/fisiologia , Doença de Huntington/metabolismo , Fatores de Transcrição/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Creatina/uso terapêutico , Creatina Quinase Forma BB/genética , Creatina Quinase Forma BB/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Camundongos , Modelos Biológicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Alzheimers Dis ; 87(3): 1115-1130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431236

RESUMO

BACKGROUND: Differential abundance of gut microbiota has found to be associated with Alzheimer's disease (AD). However, the relative abundance of gut microbiota between dementia and mild cognitive impairment (MCI) in AD is not well studied. OBJECTIVE: We attempted to identify differentially enriched gut microbes and their metabolic pathways in AD patients with dementia comparing to AD patients with MCI. METHODS: Fecal samples were collected at Shuang Ho Hospital, Taipei Medical University, Taiwan and analyzed by whole metagenomic sequencing technique. For normal controls without AD (NC), 16S rRNA sequencing was obtained from the Taiwan Microbiome Database. A total of 48 AD (38 dementia and 10 MCI defined by cognitive function scores) and 50 NC were included. Microbiome alpha and beta diversities were estimated. Differentially enriched microbes were identified with HAllA, MaAsLin, DESeq2, and LEfSe statistical modeling approaches. RESULTS: We found significantly increased abundance of Firmicutes but decreased abundance of Bacteroidetes at phylum level in AD compared to NC. In AD patients, cognitive function scores were negatively associated with abundance of Blautia hydrogenotrophica (Firmicutes), Anaerotruncus colihominis (Firmicutes), and Gordonibacter pamelaeae (Actinobacteria). In addition, microbial abundance in the sucrose and S-Adenosyl-L-methionine (SAMe) metabolic pathways was more enriched in AD with MCI than AD with dementia and significantly associated with higher cognitive function scores. CONCLUSION: Gut microbe community diversity was similar in AD patients regardless of MCI or dementia status. However, differential analyses probed in lower-level taxa and metabolic pathways suggested that specific gut microbes in Firmicutes and Actinobacteria might involve in cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Doença de Alzheimer/metabolismo , Cognição , Disfunção Cognitiva/psicologia , Microbioma Gastrointestinal/genética , Humanos , Redes e Vias Metabólicas , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , S-Adenosilmetionina , Sacarose
5.
Commun Biol ; 4(1): 22, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398073

RESUMO

Nerve growth factor (NGF) contributes to the progression of malignancy. However, the functional role and regulatory mechanisms of NGF in the development of neuroendocrine prostate cancer (NEPC) are unclear. Here, we show that an androgen-deprivation therapy (ADT)-stimulated transcription factor, ZBTB46, upregulated NGF via ZBTB46 mediated-transcriptional activation of NGF. NGF regulates NEPC differentiation by physically interacting with a G-protein-coupled receptor, cholinergic receptor muscarinic 4 (CHRM4), after ADT. Pharmacologic NGF blockade and NGF knockdown markedly inhibited CHRM4-mediated NEPC differentiation and AKT-MYCN signaling activation. CHRM4 stimulation was associated with ADT resistance and was significantly correlated with increased NGF in high-grade and small-cell neuroendocrine prostate cancer (SCNC) patient samples. Our results reveal a role of the NGF in the development of NEPC that is linked to ZBTB46 upregulation and CHRM4 accumulation. Our study provides evidence that the NGF-CHRM4 axis has potential to be considered as a therapeutic target to impair NEPC progression.


Assuntos
Adenocarcinoma/metabolismo , Carcinoma Neuroendócrino/etiologia , Fator de Crescimento Neural/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/metabolismo , Adenocarcinoma/tratamento farmacológico , Antagonistas de Androgênios/efeitos adversos , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/patologia , Estudos de Casos e Controles , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Células PC-3 , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Receptor Muscarínico M4/metabolismo
6.
Mol Neurobiol ; 57(3): 1688-1703, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31813126

RESUMO

The Twist basic helix-loop-helix transcription factor 1 (Twist1) has been implicated in embryogenesis and carcinogenesis, due to its effects on cell proliferation and anti-apoptosis signaling. Interestingly, a connection between Twist1 and neurotoxicity was recently made in mutant huntingtin (mHtt)-expressing primary cortical neurons; however, the role of Twist1 in Huntington's disease (HD)-affected striatal neurons remains undescribed. In this study, we evaluated the expression and function of Twist1 in the R6/2 HD mouse model, which expresses the polyQ-expanded N-terminal portion of human HTT protein, and a pair of striatal progenitor cell lines (STHdhQ109 and STHdhQ7), which express polyQ-expanded or non-expanded full-length mouse Htt. We further probed upstream signaling events and Twist1 anti-apoptotic function in the striatal progenitor cell lines. Twist1 was increased in mHtt-expressing striatal progenitor cells (STHdhQ109) and was correlated with disease progression in striatum and cortex brain regions of R6/2 mice. In the cell model, downregulation of Twist1 induced death of STHdhQ109 cells but had no effect on wild-type striatal progenitor cells (STHdhQ7). Twist1 knockdown stimulated caspase-3 activation and apoptosis. Furthermore, we found that signal transducer and activator of transcription 3 (STAT3) were increased in HD striatal progenitor cells and acted as an upstream regulator of Twist1. As such, inhibition of STAT3 induced apoptosis in HD striatal progenitor cells. Our results suggest that mHtt upregulates STAT3 to induce Twist1 expression. Upregulated Twist1 inhibits apoptosis, which may protect striatal cells from death during disease progression. Thus, we propose that Twist1 might play a protective role against striatal degeneration in HD.


Assuntos
Apoptose/fisiologia , Doença de Huntington/metabolismo , Células-Tronco/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Morte Celular/fisiologia , Modelos Animais de Doenças , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Masculino , Camundongos , Neostriado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo
7.
PLoS One ; 10(5): e0127654, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992839

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by the huntingtin (HTT) gene with expanded CAG repeats. In addition to the apparent brain abnormalities, impairments also occur in peripheral tissues. We previously reported that mutant Huntingtin (mHTT) exists in the liver and causes urea cycle deficiency. A low protein diet (17%) restores urea cycle activity and ameliorates symptoms in HD model mice. It remains unknown whether the dietary protein content should be monitored closely in HD patients because the normal protein consumption is lower in humans (~15% of total calories) than in mice (~22%). We assessed whether dietary protein content affects the urea cycle in HD patients. Thirty HD patients were hospitalized and received a standard protein diet (13.7% protein) for 5 days, followed by a high protein diet (HPD, 26.3% protein) for another 5 days. Urea cycle deficiency was monitored by the blood levels of citrulline and ammonia. HD progression was determined by the Unified Huntington's Disease Rating Scale (UHDRS). The HPD increased blood citrulline concentration from 15.19 µmol/l to 16.30 µmol/l (p = 0.0378) in HD patients but did not change blood ammonia concentration. A 2-year pilot study of 14 HD patients found no significant correlation between blood citrulline concentration and HD progression. Our results indicated a short period of the HPD did not markedly compromise urea cycle function. Blood citrulline concentration is not a reliable biomarker of HD progression.


Assuntos
Proteínas Alimentares/administração & dosagem , Doença de Huntington/fisiopatologia , Adulto , Citrulina/sangue , Progressão da Doença , Feminino , Humanos , Doença de Huntington/sangue , Masculino , Ureia/metabolismo
8.
Aging (Albany NY) ; 3(6): 657-62, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21685512

RESUMO

Hearing impairment following cochlear damage due to noise trauma, ototoxicity caused by aminoglycoside antibiotics, or age-related cochlear degeneration was linked to a common pathogenesis involving the formation of reactive oxygen species (ROS). Cochleae are more vulnerable to oxidative stress than other organs because of the high metabolic demands of their mechanosensory hair cells in response to sound stimulation. We recently showed that patients and mice with Huntington's disease (HD) have hearing impairment and that the dysregulated phosphocreatine (PCr)-creatine kinase (CK) system may account for this auditory dysfunction. Given the importance of noninvasive biomarkers and the easy access of hearing tests, the symptom of hearing loss in HD patients may serve as a useful clinical indicator of disease onset and progression of HD. We also showed that dietary creatine supplementation rescued the impaired PCr-CK system and improved the expression of cochlear brain-type creatine kinase (CKB) in HD mice, thereby restoring their hearing. Because creatine is an antioxidant, we postulated that creatine might enhance expression of CKB by reducing oxidative stress. In addition to HD-related hearing impairment, inferior CKB expression and/or an impaired PCr-CK system may also play an important role in other hearing impairments caused by elevated levels of ROS. Most importantly, dietary supplements may be beneficial to patients with these hearing deficiencies.


Assuntos
Creatina Quinase Forma BB/metabolismo , Perda Auditiva/etiologia , Perda Auditiva/fisiopatologia , Doença de Huntington/fisiopatologia , Animais , Cóclea/enzimologia , Cóclea/patologia , Cóclea/fisiopatologia , Creatina/metabolismo , Perda Auditiva/patologia , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
9.
J Clin Invest ; 121(4): 1519-23, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21403395

RESUMO

Huntington disease (HD) is a degenerative disorder caused by expanded CAG repeats in exon 1 of the huntingtin gene (HTT). Patients with late-stage HD are known to have abnormal auditory processing, but the peripheral auditory functions of HD patients have yet to be thoroughly assessed. In this study, 19 HD patients (aged 40-59 years) were assessed for hearing impairment using pure-tone audiometry and assessment of auditory brainstem responses (ABRs). PTA thresholds were markedly elevated in HD patients. Consistent with this, elevated ABR thresholds were also detected in two mouse models of HD. Hearing loss thus appears to be an authentic symptom of HD. Immunohistochemical analyses demonstrated the presence of mutant huntingtin that formed intranuclear inclusions in the organ of Corti of HD mice, which might interfere with normal auditory function. Quantitative RT-PCR and Western blot analyses further revealed reduced expression of brain creatine kinase (CKB), a major enzyme responsible for ATP regeneration via the phosphocreatine-creatine kinase (PCr-CK) system, in the cochlea of HD mice. Treatment with creatine supplements ameliorated the hearing impairment of HD mice, suggesting that the impaired PCr-CK system in the cochlea of HD mice may contribute to their hearing impairment. These data also suggest that creatine may be useful for treating the hearing abnormalities of patients with HD.


Assuntos
Creatina Quinase Forma BB/genética , Perda Auditiva/enzimologia , Perda Auditiva/genética , Doença de Huntington/enzimologia , Doença de Huntington/genética , Adulto , Animais , Audiometria de Tons Puros , Western Blotting , Estudos de Casos e Controles , Cóclea/efeitos dos fármacos , Cóclea/enzimologia , Creatina/farmacologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Expressão Gênica , Perda Auditiva/tratamento farmacológico , Perda Auditiva/etiologia , Humanos , Doença de Huntington/complicações , Doença de Huntington/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Neurochem ; 93(2): 310-20, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15816854

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in exon 1 of the Huntingtin (Htt) gene. We show herein that in an HD transgenic mouse model (R6/2), daily administration of CGS21680 (CGS), an A(2A) adenosine receptor (A(2A)-R)-selective agonist, delayed the progressive deterioration of motor performance and prevented a reduction in brain weight. 3D-microMRI analysis revealed that CGS reversed the enlarged ventricle-to-brain ratio of R6/2 mice, with particular improvements in the left and right ventricles. (1)H-MRS showed that CGS significantly reduced the increased choline levels in the striatum. Immunohistochemical analyses further demonstrated that CGS reduced the size of ubiquitin-positive neuronal intranuclear inclusions (NIIs) in the striatum of R6/2 mice and ameliorated mutant Htt aggregation in a striatal progenitor cell line overexpressing mutant Htt with expanded polyQ. Moreover, chronic CGS treatment normalized the elevated blood glucose levels and reduced the overactivation of a major metabolic sensor [5'AMP-activated protein kinase (AMPK)] in the striatum of R6/2 mice. Since AMPK is a master switch for energy metabolism, modulation of energy dysfunction caused by the mutant Htt might contribute to the beneficial effects of CGS. Collectively, CGS is a potential drug candidate for the treatment of HD.


Assuntos
Adenosina/análogos & derivados , Adenosina/uso terapêutico , Modelos Animais de Doenças , Doença de Huntington/genética , Doença de Huntington/prevenção & controle , Fenetilaminas/uso terapêutico , Agonistas do Receptor A2 de Adenosina , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA