Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 52(3): 498-509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37943340

RESUMO

As datasets increase in size and complexity, biomechanists have turned to artificial intelligence (AI) to aid their analyses. This paper explores how explainable AI (XAI) can enhance the interpretability of biomechanics data derived from musculoskeletal simulations. We use machine learning to classify the simulated lateral pinch data as belonging to models with healthy or one of two types of surgically altered wrists. This simulation-based classification task is analogous to using biomechanical movement and force data to clinically diagnose a pathological state. The XAI describes which musculoskeletal features best explain the classifications and, in turn, the pathological states, at both the local (individual decision) level and global (entire algorithm) level. We demonstrate that these descriptions agree with assessments in the literature and additionally identify the blind spots that can be missed with traditional statistical techniques.


Assuntos
Inteligência Artificial , Punho , Fenômenos Biomecânicos , Algoritmos , Aprendizado de Máquina
2.
J Biomech ; 161: 111834, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865980

RESUMO

Subject-specific musculoskeletal models are a promising avenue for personalized healthcare. However, current methods for producing personalized models require dense, biomechanical datasets that include expensive and time-consuming physiological measurements. For personalized models to be clinically useful, we must be able to rapidly generate models from simple, easy to collect data. In this context, the objective of this paper is to evaluate if and how simple data, namely height/weight and pinch force data, can be used to achieve model personalization via machine learning. Using simulated lateral pinch force measurements from a synthetic population of 40,000 randomly generated subjects, we train neural networks to estimate four Hill-type muscle model parameters and bone density. We compare parameter estimates to the true parameters of 10,000 additional synthetic subjects. We also generate new personalized models using the parameter estimates and perform new lateral pinch simulations to compare predicted forces using these personalized models to those generated using a baseline model. We demonstrate that increasing force measurement complexity reduces the root-mean-square error in the majority of parameter estimates. Additionally, musculoskeletal models using neural network-based parameter estimates provide up to an 80% reduction in absolute error in simulated forces when compared to a generic model. Thus, easily obtained force measurements may be suitable for personalizing models of the thumb, although extending the method to more tasks and models involving other joints likely requires additional measurements.


Assuntos
Braço , Polegar , Humanos , Polegar/fisiologia , Músculo Esquelético/fisiologia , Modelos Biológicos , Redes Neurais de Computação , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA