Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 146(8): 2609-2616, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33720222

RESUMO

A Metal-Organic Framework (MOFs) with large surface area, exposed active site, excellent catalytic performance and high chemical stability has been used as an artificial enzyme and designed for nonenzymatic electrochemical sensors. Here, a strategy of using an enhanced electrochemical sensing platform for the detection of nitic oxide (NO) and hydrogen peroxide (H2O2) was designed via a nano-metalloporphyrinic metal-organic framework (NporMOF(Fe)) as an electrode material. By taking advantage of the small size, high surface area and exposed Fe active site, the obtained NporMOF(Fe) displays excellent electrocatalytic activity toward NO and H2O2. The NporMOF(Fe) modified electrode shows high sensing ability toward the in situ generated NO in NO2- containing phosphate buffer (PB) solution with a wide linear detection range of 5 µM to 200 µM and a very low detection limit of 1.3 µM. Moreover, NporMOF(Fe) exhibits high electrocatalytic activity toward the reduction of H2O2 and the practical detection of H2O2 released from HeLa cells. Furthermore, the NporMOF(Fe) modified electrode shows excellent selectivity toward the detection of NO and H2O2 in the presence of other physiologically important analytes. This method shows excellent biosensing performance, implying the universal applicability of MOFs-based artificial nanozymes for biosensors and the potential application for third generation biosensors.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Técnicas Eletroquímicas , Células HeLa , Humanos , Peróxido de Hidrogênio , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA