Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Rev Cancer ; 1877(1): 188661, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800547

RESUMO

Genomic and chromosomal instability are hallmarks of cancer and shape the genomic composition of cancer cells, thereby determining their behavior and response to treatment. Various genetic and epigenetic alterations in cancer have been linked to genomic instability, including DNA repair defects, oncogene-induced replication stress, and spindle assembly checkpoint malfunction. A consequence of genomic and chromosomal instability is the leakage of DNA from the nucleus into the cytoplasm, either directly or through the formation and subsequent rupture of micronuclei. Cytoplasmic DNA subsequently activates cytoplasmic DNA sensors, triggering downstream pathways, including a type I interferon response. This inflammatory signaling has pleiotropic effects, including enhanced anti-tumor immunity and potentially results in sensitization of cancer cells to immune checkpoint inhibitors. However, cancers frequently evolve mechanisms to avoid immune clearance, including suppression of inflammatory signaling. In this review, we summarize inflammatory signaling pathways induced by various sources of genomic instability, adaptation mechanisms that suppress inflammatory signaling, and implications for cancer immunotherapy.


Assuntos
Dano ao DNA , Neoplasias , Instabilidade Cromossômica , DNA , Instabilidade Genômica , Humanos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Nat Commun ; 13(1): 6579, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323660

RESUMO

The limited efficacy of immune checkpoint inhibitor treatment in triple-negative breast cancer (TNBC) patients is attributed to sparse or unresponsive tumor-infiltrating lymphocytes, but the mechanisms that lead to a therapy resistant tumor immune microenvironment are incompletely known. Here we show a strong correlation between MYC expression and loss of immune signatures in human TNBC. In mouse models of TNBC proficient or deficient of breast cancer type 1 susceptibility gene (BRCA1), MYC overexpression dramatically decreases lymphocyte infiltration in tumors, along with immune signature remodelling. MYC-mediated suppression of inflammatory signalling induced by BRCA1/2 inactivation is confirmed in human TNBC cell lines. Moreover, MYC overexpression prevents the recruitment and activation of lymphocytes in both human and mouse TNBC co-culture models. Chromatin-immunoprecipitation-sequencing reveals that MYC, together with its co-repressor MIZ1, directly binds promoters of multiple interferon-signalling genes, resulting in their downregulation. MYC overexpression thus counters tumor growth inhibition by a Stimulator of Interferon Genes (STING) agonist via suppressing induction of interferon signalling. Together, our data reveal that MYC suppresses innate immunity and facilitates tumor immune escape, explaining the poor immunogenicity of MYC-overexpressing TNBCs.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Interferons , Linfócitos do Interstício Tumoral , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA