Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38142289

RESUMO

Concerns about the potential neurotoxic effects of anesthetics on developing brain exist. When making clinical decisions, the timing and dosage of anesthetic exposure are critical factors to consider due to their associated risks. In our study, we investigated the impact of repeated anesthetic exposures on the brain development trajectory of a cohort of rhesus monkeys (n = 26) over their first 2 yr of life, utilizing longitudinal magnetic resonance imaging data. We hypothesized that early or high-dose anesthesia exposure could negatively influence structural brain development. By employing the generalized additive mixed model, we traced the longitudinal trajectories of brain volume, cortical thickness, and white matter integrity. The interaction analysis revealed that age and cumulative anesthetic dose were variably linked to white matter integrity but not to morphometric measures. Early high-dose exposure was associated with increased mean, axial, and radial diffusivities across all white matter regions, compared to late-low-dose exposure. Our findings indicate that early or high-dose anesthesia exposure during infancy disrupts structural brain development in rhesus monkeys. Consequently, the timing of elective surgeries and procedures that require anesthesia for children and pregnant women should be strategically planned to account for the cumulative dose of volatile anesthetics, aiming to minimize the potential risks to brain development.


Assuntos
Anestésicos , Substância Branca , Humanos , Animais , Criança , Feminino , Gravidez , Macaca mulatta , Imagem de Tensor de Difusão/métodos , Encéfalo , Imageamento por Ressonância Magnética , Substância Branca/patologia , Anestésicos/toxicidade
2.
Neuroimage ; 285: 120491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070839

RESUMO

Cerebrovascular reactivity (CVR) is a measure of cerebral small vessels' ability to respond to changes in metabolic demand and can be quantified using magnetic resonance imaging (MRI) coupled with a vasoactive stimulus. Reduced CVR occurs with neurodegeneration and is associated with cognitive decline. While commonly measured in humans, few studies have evaluated CVR in animal models. Herein, we describe methods to induce hypercapnia in rhesus macaques (Macaca mulatta) under gas anesthesia to measure cerebral blood flow (CBF) and CVR using pseudo-continuous arterial spin labeling (pCASL). Fifteen (13 M, 2 F) adult rhesus macaques underwent pCASL imaging that included a baseline segment (100% O2) followed by a hypercapnic challenge (isoflurane anesthesia with 5% CO2, 95% O2 mixed gas). Relative hypercapnia was defined as an end-tidal CO2 (ETCO2) ≥5 mmHg above baseline ETCO2. The mean ETCO2 during the baseline segment of the pCASL sequence was 34 mmHg (range: 23-48 mmHg). During this segment, mean whole-brain CBF was 51.48 ml/100g/min (range: 21.47-77.23 ml/100g/min). Significant increases (p<0.0001) in ETCO2 were seen upon inspiration of the mixed gas (5% CO2, 95% O2). The mean increase in ETCO2 was 8.5 mmHg and corresponded with a mean increase in CBF of 37.1% (p<0.0001). The mean CVR measured was 4.3%/mmHg. No anesthetic complications occurred as a result of the CO2 challenge. Our methods were effective at inducing a state of relative hypercapnia that corresponds with a detectable increase in whole brain CBF using pCASL MRI. Using these methods, a CO2 challenge can be performed in conjunction with pCASL imaging to evaluate CBF and CVR in rhesus macaques. The measured CVR in rhesus macaques is comparable to human CVR highlighting the translational utility of rhesus macaques in neuroscience research. These methods present a feasible means to measure CVR in comparative models of neurodegeneration and cerebrovascular dysfunction.


Assuntos
Dióxido de Carbono , Hipercapnia , Adulto , Animais , Humanos , Macaca mulatta , Hipercapnia/diagnóstico por imagem , Marcadores de Spin , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular/fisiologia
3.
AJR Am J Roentgenol ; 222(1): e2330189, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937836

RESUMO

BACKGROUND. CT scanners' net scan state (i.e., image acquisition period) represents a potential target for energy savings through protocol adjustments. However, gauging CT energy savings is difficult without installing costly energy monitors. OBJECTIVE. The purpose of this article was to assess correlations between CT dose report metrics and energy consumption during the system net scan state and to compare theoretic energy savings from matching percentage reductions in energy consumption during net scan and idle system states. METHODS. Current sensors were installed on a single CT scanner. A phantom was scanned at varying kilovoltage settings and effective tube current-rotation time settings. A retrospective assessment was performed in 32 patients (mean age, 61.2 ± 17.9 [SD] years; 17 men, 15 women) who underwent 32 single-energy noncontrast abdominopelvic CT examinations from September 22, 2021, to September 27, 2021, on the same scanner. Correlations between dose report metrics and net scan energy consumption were assessed in the phantom and clinical scans, and equations were generated to derive net scan energy consumption from DLP. An additional retrospective assessment was performed in 1355 patients (mean age, 59.3 ± 16.9 years; 663 men, 692 women) who underwent 1728 single-energy noncontrast abdominopelvic CT examinations from January 1, 2021, through December 31, 2021, on the same scanner to estimate net scan energy consumption per examination. This information was integrated with literature-derived values to compare estimated annual national energy savings resulting from 20% reductions in net scan and idle state energy consumption. RESULTS. Net scan energy consumption in the phantom scans showed high linear correlation with DLP (R2 = 0.87), and, in the clinical scans, high linear correlation with CTDIvol (R2 = 0.89) and very high linear correlation with DLP (R2 = 0.92). When combining mean DLP in examinations performed in the 1-year interval, an equation relating DLP and net scan energy consumption and literature values estimated that annual national energy savings was 14.9 times greater (40,437,870 kWh/2,704,000 kWh) by targeting the idle state rather than net scan state. CONCLUSION. CT net scan energy savings can be inferred from reductions in dose report metrics. However, targeting net scan energy consumption has modest impact relative to targeting idle state energy consumption. CLINICAL IMPACT. Environmental sustainability efforts should target the idle state energy consumption of CT.


Assuntos
Tomografia Computadorizada por Raios X , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Doses de Radiação , Estudos Retrospectivos , Tomógrafos Computadorizados , Imagens de Fantasmas
4.
Magn Reson Med ; 90(2): 583-595, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37092852

RESUMO

PURPOSE: To reduce the total scan time of multiple postlabeling delay (multi-PLD) pseudo-continuous arterial spin labeling (pCASL) by developing a hierarchically structured 3D convolutional neural network (H-CNN) that estimates the arterial transit time (ATT) and cerebral blow flow (CBF) maps from the reduced number of PLDs as well as averages. METHODS: A total of 48 subjects (38 females and 10 males), aged 56-80 years, compromising a training group (n = 45) and a validation group (n = 3) underwent MRI including multi-PLD pCASL. We proposed an H-CNN to estimate the ATT and CBF maps using a reduced number of PLDs and a separately reduced number of averages. The proposed method was compared with a conventional nonlinear model fitting method using the mean absolute error (MAE). RESULTS: The H-CNN provided the MAEs of 32.69 ms for ATT and 3.32 mL/100 g/min for CBF estimations using a full data set that contains six PLDs and six averages in the 3 test subjects. The H-CNN also showed that the smaller number of PLDs can be used to estimate both ATT and CBF without significant discrepancy from the reference (MAEs of 231.45 ms for ATT and 9.80 mL/100 g/min for CBF using three of six PLDs). CONCLUSION: The proposed machine learning-based ATT and CBF mapping offers substantially reduced scan time of multi-PLD pCASL.


Assuntos
Artérias , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Circulação Cerebrovascular/fisiologia , Marcadores de Spin
5.
Int J Radiat Oncol Biol Phys ; 119(1): 208-218, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972714

RESUMO

PURPOSE: Long-term survivors of brain irradiation can experience irreversible injury and cognitive impairment. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) are used to evaluate brain volume and white matter (WM) microstructure in neurodevelopmental and neurodegenerative conditions. The goal of this study was to evaluate the long-term effects of single-dose total-body irradiation (TBI) or TBI with 5% partial-body sparing on brain volumetrics and WM integrity in macaques. METHODS AND MATERIALS: We used MRI scans from a cohort of male rhesus macaques (age range, 3.6-22.8 years) to compare global and regional brain volumes and WM diffusion in survivors of TBI (T1-weighted, n = 137; diffusion tensor imaging, n = 121; dose range, 3.5-10 Gy) with unirradiated controls (T1-weighted, n = 48; diffusion tensor imaging, n = 38). RESULTS: In all regions of interest, radiation affected age-related changes in fractional anisotropy, which tended to increase across age in both groups but to a lesser extent in the irradiated group (interaction P < .01). Depending on the region of interest, mean diffusivity decreased or remained the same across age in unirradiated animals, whereas it increased or did not change in irradiated animals. The increases in mean diffusivity were driven by changes in radial diffusivity, which followed similar trends across age. Axial diffusivity did not differ by irradiation status. Age-related changes in relative volumes in controls reflected normal trends in humans, with increasing WM and decreasing gray matter until middle age. Cerebrospinal fluid (CSF) volume did not differ across age in controls. WM volume was lower and CSF volume was higher in young irradiated macaques. WM volume was similar between groups, and CSF volume lower in older irradiated macaques. Gray matter volume was unaffected by radiation. CONCLUSIONS: TBI results in delayed WM expansion and long-term disruption of WM integrity. Diffusion changes suggest that myelin injury in WM is a hallmark of late-delayed radiation-induced brain injury.


Assuntos
Substância Branca , Humanos , Pessoa de Meia-Idade , Animais , Masculino , Idoso , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Substância Branca/patologia , Imagem de Tensor de Difusão/métodos , Macaca mulatta , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
6.
Int J Radiat Oncol Biol Phys ; 116(2): 295-304, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235854

RESUMO

PURPOSE: The American Association of Physicists in Medicine (AAPM) shares the results, conclusions, and recommendations from the initial Equity, Diversity, and Inclusion Climate Survey conducted in 2021. METHODS AND MATERIALS: The climate survey targeted medical physicists who are full members of the AAPM and included demographic inquiries and questions intended to assess the working environmental climate in terms of a sense of belonging and inclusion, experiences of discrimination and harassment, and obstacles to participation within the AAPM. The survey invitation was sent to 5,500 members. Responses were collected from 1385 members (response rate of 25%) between January and February 2021. RESULTS: Overall, the medical physics workplace climate was positive. However, some demographic and professional subgroups reported lower levels of agreement with positive characteristics of their workplace climates. Compared with men, women ranked lower 7 of 8 categories that characterized the workplace climate. Other subgroups that also ranked the workplace climate descriptors lower included individuals not originally from the United States and Canada (3/8). Most respondents strongly agreed/agreed that the climate within the AAPM was welcoming. However, 17% of respondents reported personally experiencing or witnessing microaggressions within the AAPM. Overall, medical physicists reported low levels of agreement that opportunities within the AAPM were available to them, from 34% to 60% among 8 categories, including opportunities to volunteer, join committees, and compete for leadership positions within the AAPM. Several subgroups reported even lower levels of agreement that these opportunities are available. Asian and Asian American respondents (3/8) and physicists with origins in countries outside the United States and Canada (7/8) reported fewer opportunities to participate in the AAPM. Medical physicists reported their experiences of discrimination and sexual harassment in their workplaces and within the AAPM. For those who reported personal experiences of sexual harassment, only 24% (15/63) felt comfortable reporting when it occurred within their workplaces, and 35% (9/26) felt comfortable reporting when it occurred within the AAPM. CONCLUSIONS: The report concludes with several recommendations for action.


Assuntos
Medicina , Assédio Sexual , Masculino , Humanos , Feminino , Estados Unidos , Física Médica , Diversidade, Equidade, Inclusão , Inquéritos e Questionários
7.
Magn Reson Imaging Clin N Am ; 30(3): 409-424, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35995470

RESUMO

Use of magnetic resonance (MR) imaging in the emergency department continues to increase. Although computed tomography is the first-line imaging modality for most head and neck emergencies, MR is superior in some situations and imparts no ionizing radiation. This article provides a symptom-based approach to nontraumatic head and neck pathologic conditions most relevant to emergency head and neck MR imaging, emphasizing relevant anatomy, "do not miss" findings affecting clinical management, and features that may aid differentiation from potential mimics. Essential MR sequences and strategies for obtaining high-quality images when faced with patient motion and other technical challenges are also discussed.


Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento por Ressonância Magnética , Emergências , Dor Ocular , Cabeça/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Pescoço/diagnóstico por imagem
8.
Magn Reson Imaging Clin N Am ; 30(3): 425-439, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35995471

RESUMO

The use of magnetic resonance (MR) imaging in the emergency department continues to increase. Although computed tomography is the first-line imaging modality for most head and neck emergencies, MR is superior in some situations and imparts no ionizing radiation. This article provides a symptom-based approach to nontraumatic head and neck pathologic conditions most relevant to emergency head and neck MR imaging, emphasizing relevant anatomy, "do not miss" findings affecting clinical management, and features that may aid differentiation from potential mimics. Essential MR sequences and strategies for obtaining high-quality images when faced with patient motion and other technical challenges are also discussed.


Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento por Ressonância Magnética , Emergências , Dor Facial , Cabeça/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Pescoço/diagnóstico por imagem
10.
Front Physiol ; 12: 645342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135768

RESUMO

Vascular risk factors (e.g., obesity and hypertension) are associated with cerebral small vessel disease, Alzheimer's disease (AD) pathology, and dementia. Reduced perfusion may reflect the impaired ability of blood vessels to regulate blood flow in reaction to varying circumstances such as hypercapnia (increased end-tidal partial pressures of CO2). It has been shown that cerebrovascular reactivity (CVR) measured with blood-oxygen-level-dependent (BOLD) MRI is correlated with cognitive performance and alterations of CVR may be an indicator of vascular disfunction leading to cognitive decline. However, the underlying mechanism of CVR alterations in BOLD signal may not be straight-forward because BOLD signal is affected by multiple physiological parameters, such as cerebral blood flow (CBF), cerebral blood volume, and oxygen metabolism. Arterial spin labeling (ASL) MRI quantitatively measures blood flow in the brain providing images of local CBF. Therefore, in this study, we measured CBF and its changes using a dynamic ASL technique during a hypercapnia challenge and tested if CBF or CVR was related to cognitive performance using the Mini-mental state examination (MMSE) score. Seventy-eight participants underwent cognitive testing and MRI including ASL during a hypercapnia challenge with a RespirAct computer-controlled gas blender, targeting 10 mmHg higher end-tidal CO2 level than the baseline while end-tidal O2 level was maintained. Pseudo-continuous ASL (PCASL) was collected during a 2-min baseline and a 2-min hypercapnic period. CVR was obtained by calculating a percent change of CBF per the end-tidal CO2 elevation in mmHg between the baseline and the hypercapnic challenge. Multivariate regression analyses demonstrated that baseline resting CBF has no significant relationship with MMSE, while lower CVR in the whole brain gray matter (ß = 0.689, p = 0.005) and white matter (ß = 0.578, p = 0.016) are related to lower MMSE score. In addition, region of interest (ROI) based analysis showed positive relationships between MMSE score and CVR in 26 out of 122 gray matter ROIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA