Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39091750

RESUMO

The gastrointestinal tract is continuously exposed to foreign antigens in food and commensal microbes with potential to induce adaptive immune responses. Peripherally induced T regulatory (pTreg) cells are essential for mitigating inflammatory responses to these agents1-4. While RORγt+ antigen-presenting cells (RORγt-APCs) were shown to program gut microbiota-specific pTregs5-7, understanding of their characteristics remains incomplete, and the APC subset responsible for food tolerance has remained elusive. Here, we demonstrate that RORγt-APCs are similarly required for differentiation of food antigen-specific pTregs and establishment of oral tolerance. The ability of these cells to direct both food and microbiota-specific pTreg cell differentiation is contingent on expression of RORγt and on a unique cis-regulatory element within the Rorc gene locus (Rorc(t) +7kb). Absent this +7kb element, there was a notable increase in food antigen-specific T helper 2 (Th2) cells in lieu of pTregs, leading to compromised tolerance in a mouse asthma model. By employing single-cell analyses across these models, as well as freshly resected mesenteric lymph nodes from a human organ donor, we identified a rare subset of evolutionarily conserved APCs that are dependent on RORγt, uniquely express the Prdm16 transcription factor, and are endowed with essential mediators for inducing pTreg cell differentiation. Our findings suggest that a better understanding of how RORγt-APCs develop and how they regulate T cell responses to food and microbial antigens could offer new insights into developing therapeutic strategies for autoimmune and allergic diseases as well as organ transplant tolerance.

2.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853977

RESUMO

Food antigens elicit immune tolerance through the action of regulatory T cells (Tregs) in the intestine. Although antigens that trigger common food allergies are known, the epitopes that mediate tolerance to most foods have not been described. Here, we identified murine T cell receptors specific for maize, wheat, and soy, and used expression cloning to de-orphan their cognate epitopes. All of the epitopes derive from seed storage proteins that are resistant to degradation and abundant in the edible portion of the plant. Multiple unrelated T cell clones were specific for an epitope at the C-terminus of 19 kDa alpha-zein, a protein from maize kernel. An MHC tetramer loaded with this antigen revealed that zein-specific T cells are predominantly Tregs localized to the intestine. These cells, which develop concurrently with weaning, constitute up to 2% of the peripheral Treg pool. Bulk and single-cell RNA sequencing revealed that these cells express higher levels of immunosuppressive markers and chemokines compared to other Tregs. These data suggest that immune tolerance to plant-derived foods is focused on a specific class of antigens with common features, and they reveal the functional properties of naturally occurring food-specific Tregs.

3.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39131293

RESUMO

Forty percent of the US population and 1 in 6 individuals worldwide are obese, and the incidence of this disease is surging globally1,2. Various dietary interventions, including carbohydrate and fat restriction, and more recently amino acid restriction, have been explored to combat this epidemic3-6. We sought to investigate the impact of removing individual amino acids on the weight profiles of mice. Compared to essential amino acid restriction, induction of conditional cysteine restriction resulted in the most dramatic weight loss, amounting to 20% within 3 days and 30% within one week, which was readily reversed. This weight loss occurred despite the presence of substantial cysteine reserves stored in glutathione (GSH) across various tissues7. Further analysis demonstrated that the weight reduction primarily stemmed from an increase in the utilization of fat mass, while locomotion, circadian rhythm and histological appearance of multiple other tissues remained largely unaffected. Cysteine deficiency activated the integrated stress response (ISR) and NRF2-mediated oxidative stress response (OSR), which amplify each other, leading to the induction of GDF15 and FGF21, hormones associated with increased lipolysis, energy homeostasis and food aversion8-10. We additionally observed rapid tissue coenzyme A (CoA) depletion, resulting in energetically inefficient anaerobic glycolysis and TCA cycle, with sustained urinary excretion of pyruvate, orotate, citrate, α-ketoglutarate, nitrogen rich compounds and amino acids. In summary, our investigation highlights that cysteine restriction, by depleting GSH and CoA, exerts a maximal impact on weight loss, metabolism, and stress signaling compared to other amino acid restrictions. These findings may pave the way for innovative strategies for addressing a range of metabolic diseases and the growing obesity crisis.

4.
Sci Immunol ; 9(93): eade6256, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457513

RESUMO

Programmed cell death-1 (PD-1) is a potent immune checkpoint receptor on T lymphocytes. Upon engagement by its ligands, PD-L1 or PD-L2, PD-1 inhibits T cell activation and can promote immune tolerance. Antagonism of PD-1 signaling has proven effective in cancer immunotherapy, and conversely, agonists of the receptor may have a role in treating autoimmune disease. Some immune receptors function as dimers, but PD-1 has been considered monomeric. Here, we show that PD-1 and its ligands form dimers as a consequence of transmembrane domain interactions and that propensity for dimerization correlates with the ability of PD-1 to inhibit immune responses, antitumor immunity, cytotoxic T cell function, and autoimmune tissue destruction. These observations contribute to our understanding of the PD-1 axis and how it can potentially be manipulated for improved treatment of cancer and autoimmune diseases.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Tolerância Imunológica , Ativação Linfocitária , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA