Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(7): 2758-2765, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33792332

RESUMO

Artificially engineered topological superconductivity has emerged as a viable route to create Majorana modes. In this context, proximity-induced superconductivity in materials with a sizable spin-orbit coupling has been intensively investigated in recent years. Although there is convincing evidence that superconductivity may indeed be induced, it has been difficult to elucidate its topological nature. Here, we engineer an artificial topological superconductor by progressively introducing superconductivity (Nb), strong spin-orbital coupling (Pt), and topological states (Bi2Te3). Through spectroscopic imaging of superconducting vortices within the bare s-wave superconducting Nb and within proximitized Pt and Bi2Te3 layers, we detect the emergence of a zero-bias peak that is directly linked to the presence of topological surface states. Our results are rationalized in terms of competing energy trends which are found to impose an upper limit to the size of the minigap separating Majorana and trivial modes, its size being ultimately linked to fundamental materials properties.

2.
Proc Natl Acad Sci U S A ; 113(51): 14656-14661, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930314

RESUMO

Silicene, analogous to graphene, is a one-atom-thick 2D crystal of silicon, which is expected to share many of the remarkable properties of graphene. The buckled honeycomb structure of silicene, along with enhanced spin-orbit coupling, endows silicene with considerable advantages over graphene in that the spin-split states in silicene are tunable with external fields. Although the low-energy Dirac cone states lie at the heart of all novel quantum phenomena in a pristine sheet of silicene, a hotly debated question is whether these key states can survive when silicene is grown or supported on a substrate. Here we report our direct observation of Dirac cones in monolayer silicene grown on a Ag(111) substrate. By performing angle-resolved photoemission measurements on silicene(3 × 3)/Ag(111), we reveal the presence of six pairs of Dirac cones located on the edges of the first Brillouin zone of Ag(111), which is in sharp contrast to the expected six Dirac cones centered at the K points of the primary silicene(1 × 1) Brillouin zone. Our analysis shows clearly that the unusual Dirac cone structure we have observed is not tied to pristine silicene alone but originates from the combined effects of silicene(3 × 3) and the Ag(111) substrate. Our study thus identifies the case of a unique type of Dirac cone generated through the interaction of two different constituents. The observation of Dirac cones in silicene/Ag(111) opens a unique materials platform for investigating unusual quantum phenomena and for applications based on 2D silicon systems.

3.
Nat Mater ; 15(9): 968-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27376684

RESUMO

Superconducting and topological states are two most intriguing quantum phenomena in solid materials. The entanglement of these two states, the topological superconducting state, will give rise to even more exotic quantum phenomena. While many materials are found to be either a superconductor or a topological insulator, it is very rare that both states exist in one material. Here, we demonstrate by first-principles theory as well as scanning tunnelling spectroscopy and angle-resolved photoemission spectroscopy experiments that the recently discovered 'two-dimensional (2D) superconductor' of single-layer FeSe also exhibits 1D topological edge states within an energy gap of ∼40 meV at the M point below the Fermi level. It is the first 2D material that supports both superconducting and topological states, offering an exciting opportunity to study 2D topological superconductors through the proximity effect.

4.
Proc Natl Acad Sci U S A ; 111(52): 18501-6, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25502774

RESUMO

In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator-superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator-superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator-superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator-superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature.

5.
Nat Mater ; 12(7): 605-10, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23708329

RESUMO

The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.

6.
Polymers (Basel) ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543426

RESUMO

The polarization state of light waves significantly affects the quality of holographic recordings. This paper quantitatively analyzes the impact of different polarization states of signal and reference beams on the quality of holographic recordings in PQ/PMMA photopolymer systems during the holography process. By deriving the light field distribution of the interference between two light waves of different polarization states and introducing the interference fringe contrast and the modulation of the refractive index of the photopolymer, we established the relationship between the diffraction efficiency of PQ/PMMA photopolymer holographic gratings and the angle between polarization directions. Based on this relationship, simulations and experiments were conducted. The experimental results demonstrated that as the angle between the polarization directions increased, the diffraction efficiency of the material decreased, with the efficiency dropping to 24.69% of its original value when the angle increased from 0° to 50°. When the angle increased to 60°, the influence of polarization characteristics became gradually significant, and at 90°, it was entirely dominated by polarization characteristics. The photoinduced birefringence properties of the PQ/PMMA prepared in the measurement experiment were studied, and the polarization characteristics of the reconstructed light under polarization direction angles of 0°, 60°, and 90° were investigated. The results indicated that at a polarization direction angle of 60 degrees, the material exhibited a significant response to the polarization information of the signal light. Finally, holographic recordings of objects at different polarization direction angles were conducted, and the reconstructed images were used to visually reflect the impact of the polarization direction angle on the quality of holographic recordings.

7.
Sci Adv ; 9(28): eadg7269, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436976

RESUMO

Materials with Kagome nets are of particular importance for their potential combination of strong correlation, exotic magnetism, and electronic topology. KV3Sb5 was discovered to be a layered topological metal with a Kagome net of vanadium. Here, we fabricated Josephson Junctions of K1-xV3Sb5 and induced superconductivity over long junction lengths. Through magnetoresistance and current versus phase measurements, we observed a magnetic field sweeping direction-dependent magnetoresistance and an anisotropic interference pattern with a Fraunhofer pattern for in-plane magnetic field but a suppression of critical current for out-of-plane magnetic field. These results indicate an anisotropic internal magnetic field in K1-xV3Sb5 that influences the superconducting coupling in the junction, possibly giving rise to spin-triplet superconductivity. In addition, the observation of long-lived fast oscillations shows evidence of spatially localized conducting channels arising from edge states. These observations pave the way for studying unconventional superconductivity and Josephson device based on Kagome metals with electron correlation and topology.

8.
Adv Mater ; 33(21): e2008634, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33942944

RESUMO

Weyl semimetals, a class of 3D topological materials, exhibit a unique electronic structure featuring linear band crossings and disjoint surface states (Fermi-arcs). While first demonstrations of topologically driven phenomena have been realized in bulk crystals, efficient routes to control the electronic structure have remained largely unexplored. Here, a dramatic modification of the electronic structure in epitaxially grown NbP Weyl semimetal thin films is reported, using in situ surface engineering and chemical doping strategies that do not alter the NbP lattice structure and symmetry, retaining its topological nature. Through the preparation of a dangling-bond-free, P-terminated surface which manifests in a surface reconstruction, all the well-known trivial surface states of NbP are fully suppressed, resulting in a purely topological Fermi-arc dispersion. In addition, a substantial Fermi-energy shift from -0.2 to 0.3 eV across the Weyl points is achieved by surface chemical doping, unlocking access to the hitherto unexplored n-type region of the Weyl spectrum. These findings constitute a milestone toward surface-state and Fermi-level engineering of topological bands in Weyl semimetals, and, while there are still challenges in minimizing doping-driven disorder and grain boundary density in the films, they do represent a major advance to realize device heterostructures based on Weyl physics.

9.
ACS Nano ; 14(4): 4405-4413, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32053338

RESUMO

Weyl semimetals (WSMs) exhibit an electronic structure governed by linear band dispersions and degenerate (Weyl) points that lead to exotic physical phenomena. While WSMs were established in bulk monopnictide compounds several years ago, the growth of thin films remains a challenge. Here, we report the bottom-up synthesis of single-crystalline NbP and TaP thin films, 9 to 70 nm thick, by means of molecular beam epitaxy. The as-grown epitaxial films feature a phosphorus-rich stoichiometry, a tensile-strained unit cell, and a homogeneous surface termination, unlike their bulk crystal counterparts. These properties result in an electronic structure governed by topological surface states as directly observed using in situ momentum photoemission microscopy, along with a Fermi-level shift of -0.2 eV with respect to the intrinsic chemical potential. Although the Fermi energy of the as-grown samples is still far from the Weyl points, carrier mobilities close to 103 cm2/(V s) have been measured at room temperature in patterned Hall-bar devices. The ability to grow thin films of Weyl semimetals that can be tailored by doping or strain, is an important step toward the fabrication of functional WSM-based devices and heterostructures.

10.
Sci Adv ; 6(31): eabb6003, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32789181

RESUMO

The anomalous Hall effect (AHE) is one of the most fundamental phenomena in physics. In the highly conductive regime, ferromagnetic metals have been the focus of past research. Here, we report a giant extrinsic AHE in KV3Sb5, an exfoliable, highly conductive semimetal with Dirac quasiparticles and a vanadium Kagome net. Even without report of long range magnetic order, the anomalous Hall conductivity reaches 15,507 Ω-1 cm-1 with an anomalous Hall ratio of ≈ 1.8%; an order of magnitude larger than Fe. Defying theoretical expectations, KV3Sb5 shows enhanced skew scattering that scales quadratically, not linearly, with the longitudinal conductivity, possibly arising from the combination of highly conductive Dirac quasiparticles with a frustrated magnetic sublattice. This allows the possibility of reaching an anomalous Hall angle of 90° in metals. This observation raises fundamental questions about AHEs and opens new frontiers for AHE and spin Hall effect exploration, particularly in metallic frustrated magnets.

11.
Nat Phys ; 14(11): 1125-1131, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30416534

RESUMO

Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co3Sn2S2, with a quasi-two-dimensional crystal structure consisting of stacked Kagomé lattices. This lattice provides an excellent platform for hosting exotic topological quantum states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl nodes close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the significantly enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1130 Ω-1 cm-1 and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the Kagomé-lattice structure and the out-of-plane ferromagnetic order of Co3Sn2S2, we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit.

12.
Nat Commun ; 7: 10608, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853801

RESUMO

The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

13.
J Phys Condens Matter ; 27(18): 183201, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25879999

RESUMO

FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

14.
Nat Commun ; 5: 5047, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25248072

RESUMO

The latest discovery of possible high-temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate has generated much attention. Initial work found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer film shows an insulating behaviour. Such a marked layer-dependent difference is surprising and the underlying origin remains unclear. Here we report a comparative angle-resolved photoemission study between the single-layer and double-layer FeSe/SrTiO3 films annealed in vacuum. We find that, different from the single-layer FeSe/SrTiO3 film, the double-layer FeSe/SrTiO3 film is hard to get doped and remains in the semiconducting/insulating state under an extensive annealing condition. Such a behaviour originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the doping mechanism and the origin of superconductivity in the FeSe/SrTiO3 films.

15.
Nat Commun ; 3: 931, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22760630

RESUMO

The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.


Assuntos
Condutividade Elétrica , Compostos de Ferro/química , Selênio/química , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA